Yacas
Release 1.6.1

Ayal Pinkus, Serge Winitzki and Grzegorz Mazur

November 07, 2016

Contents

9

Getting started

Tutorial

Reference Manual
Programming in Yacas

The Yacas Book of Algorithms
Credits *°

License

Glossary

Indices and tables

Bibliography

17

193

231

269

273

289

293

295

CHAPTER 1

Getting started

1.1 Installation

Yacas is available for a variety of platforms. See http://www.yacas.org/getting_started/downloads/ for binary packages
and installation instructions.

1.2 Installation from sources

1.2.1 Getting sources

Version 1.6.0 can be downloaded from https://github.com/grzegorzmazur/yacas/archive/v1.6.0.zip or
https://github.com/grzegorzmazur/yacas/archive/v1.6.0.tar.gz, while the current development version is accessi-
ble from https://github.com/grzegorzmazur/yacas/archive/develop.zip.

1.2.2 Compilation

Common build options

ENABLE_CYACAS_CONSOLE Build text console for the native yacas engine. Enabled by default.
ENABLE_CYACAS_GUI Build graphical interface for the native yacas engine. Requires Qt 5.5. Enabled by default.

ENABLE CYACAS_KERNEL Build native yacas kernel for Jupyter Notebook. Requires Boost, ZeroMQ and
zmqpp. Disabled by default.

ENABLE _,JYACAS Build the Java yacas engine and text console for it. Disabled by default.
ENABLE_DOCS Generate HTML documentation. Disabled by default.

MacOS X

* Open Terminal window
¢ Change directory to the yacas source directory

¢ Execute

http://www.yacas.org/getting_started/downloads/
https://github.com/grzegorzmazur/yacas/archive/v1.6.0.zip
https://github.com/grzegorzmazur/yacas/archive/v1.6.0.tar.gz
https://github.com/grzegorzmazur/yacas/archive/develop.zip

Yacas, Release 1.6.1

mkdir build
cd build
cmake -G Xcode [-Dcommon_option=value ...]

* Open generated project in Xcode and build the Release variant

Microsoft Windows

* Open Command Prompt window
* Change directory to the yacas source directory

¢ Execute

mkdir build
cd build
cmake -G "Visual Studio 14 2015 Win64" [-Dcommon_option=value ...]

* Open generated project in Visual Studio and build the Release variant

Linux

* Open Terminal window
» Change directory to the yacas source directory

¢ Execute

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release [-Dcommon_option=value ...]
make

* To install newly built binaries execute make install

Java

* Open Terminal or Command Prompt window
» Change directory to the yacas source directory

e Execute ant Jjar

yacas-online

* build yacas using emscripten

mkdir build_js
cd build_js
cmake —-DCMAKE_TOOLCHAIN_FILE=<EMSCRIPTEN_ROOT>/cmake/Modules/Platform/Emscripten.cmake \
—-DENABLE_CYACAS_GUI=No -DENABLE_CYACAS_KERNEL=No -DENABLE_JYACAS=No -DENABLE_DOCS=No -DCMAKE_BUI
cd

where <EMSCRIPTEN_ROOT> stands for the Emscripten root directory

¢ copy

2 Chapter 1. Getting started

Yacas, Release 1.6.1

build_js/cyacas/yacas/yacas. Js
build_js/cyacas/yacas/yacas. js.mem
cyacas/yacas—gui/resources/yacas—-online.html
cyacas/yacas—gui/resources/jquery/
cyacas/yacas—gui/resources/mathbar/
cyacas/yacas—gui/resources/plot3d/

cyacas/yacas—gui/resources/yagy_ui/

to the installation directory

1.2. Installation from sources

Yacas, Release 1.6.1

4 Chapter 1. Getting started

CHAPTER 2

Tutorial

2.1 Yacas syntax

Expressions in Yacas are generally built up of words. We will not bore you with the exact definitions of such words, but
roughly speaking they are either sequences of alphabetic letters, or a number, or a bracket, or space to separate words,
or a word built up from symbols like +, —, %, <, efc.. If you want, you can mix these different types of characters, by
surrounding them with quotes. Thus, "This text" is what is called one token, surrounded by quotes.

The usual notation people use when writing down a calculation is called the infix notation, and you can readily
recognize it, as for example 2+3 and 3+4. Prefix operators also exist. These operators come before an expression,
like for example the unary minus sign (called unary because it accepts one argument), — (3+4) . In addition to prefix
operators there are also postfix operators, like the exclamation mark to calculate the factorial of a number, 10! .

Yacas understands standard simple arithmetic expressions. Some examples:
e 2+3 (addition)
e 23 (multiplication)
e 2-3 (subtraction)
e 2”3 (raising powers)
* 2+3%4
e (2+43) x4
¢ 6/3 (division)
*1/3

Divisions are not reduced to real numbers, but kept as a rational for as long as possible, since the rational is an exact
correct expression (and any real number would just be an approximation). Yacas is able to change a rational in to a
number with the function N, for example N (1/3).

Operators have precedence, meaning that certain operations are done first before others are done. For example, in
2+3«4 the multiplication is performed before the addition. The usual way to change the order of a calculation is with
round brackets. The round brackets in the expression (2+3) =4 will force Yacas to first add 2 and 3, and then multiply
the result.

Simple function calls have their arguments between round brackets, separated by commas. Examples are Sin (P1i)
(which indicates that you are interested in the value of the trigonometric function sin applied to the constant 7),
and Min (5,1, 3,-5,10) (which should return the lowest of its arguments, —5 in this case). Functions usually
have the form f (), £ (x) or £ (x,vy,z, ...) depending on how many arguments the function accepts. Functions
always return a result. For example, Cos (0) should return 1. Evaluating functions can be thought of as simplifying
an expression as much as possible. Sometimes further simplification is not possible and a function returns itself

Yacas, Release 1.6.1

unsimplified, like taking the square root of an integer Sqrt (2) . A reduction to a number would be an approximation.
We explain elsewhere how to get Yacas to simplify an expression to a number.

Yacas allows for use of the infix notation, but with some additions. Functions can be bodied, meaning that the last
argument is written past the close bracket. An example is ForEach, where we write ForEach (item, 1

10) Echo(item);. Echo(item) is the last argument to the function ForEach.
 A list is enclosed
with curly braces, and is written out with commas between the elements, like for example {1, 2, 3}. items in lists
(and things that can be made to look like lists, like arrays and strings), can then be accessed by indicating the index
between square brackets after the object. {a, b, c} [2] should return b, as b is the second element in the list (Yacas
starts counting from 1 when accessing elements). The same can be done with strings: "abc" [2].
 And
finally, function calls can be grouped together, where they get executed one at a time, and the result of executing the
last expression is returned. This is done through square brackets, as [Echo ("Hello"); Echo ("World");
True;];,which first writes Hel1lo to screen, then Wor1d on the next line, and then returns True.

When you type in an expression, you have to take in to account the fact that Yacas is case-sensitive. This means that a
function sin (with all lowercase) is a different function from Sin (which starts with a capital S), and the variable v
is a different one from V.

2.2 Using Yacas from the calculation center

As mentioned earlier, you can type in commands on the command line in the calculation center. Typically, you would
enter one statement per line, for example, click on Sin (Pi/2) ;. The has a memory, and remembers results from
calculations performed before. For example, if you define a function on a line (or set a variable to a value), the defined
function (or variable) are available to be used in following lines. A session can be restarted (forgetting all previous
definitions and results) by typing restart. All memory is erased in that case.

Statements should end with a semicolon ; although this is not required in interactive sessions (Yacas will append a
semicolon at end of line to finish the statement).

The command line has a history list, so it should be easy to browse through the expressions you entered previously
using the up and down arrow keys.

When a few characters have been typed, the command line will use the characters before the cursor as a filter into
the history, and allow you to browse through all the commands in the history that start with these characters quickly,
instead of browsing through the entire history. If the system recognized the first few characters, it will also show the
commands that start with the sequence entered. You can use the arrow keys to browse through this list, and then select
the intended function to be inserted by pressing enter.

Commands spanning multiple lines can (and actually have to) be entered by using a trailing backslash at end of each
continued line. For example, clicking on 2+3+ will result in an error, but entering the same with a backslash at the
end and then entering another expression will concatenate the two lines and evaluate the concatenated input.

Incidentally, any text Yacas prints without a prompt is either a message printed by a function as a side-effect, or an
error message. Resulting values of expressions are always printed after an Out > prompt.

2.3 Yacas as a symbolic calculator

We are ready to try some calculations. Yacas uses a C-like infix syntax and is case-sensitive. Here are some exact
manipulations with fractions for a start: 1/14+5/21 (30— (1+1/2) x5%2) ;

The standard scripts already contain a simple math library for symbolic simplification of basic algebraic functions.
Any names such as x are treated as independent, symbolic variables and are not evaluated by default. Some examples
to try:

e 0+x

6 Chapter 2. Tutorial

Yacas, Release 1.6.1

e xt+lxy
* Sin(ArcSin(alpha))+Tan (ArcTan (beta))

Note that the answers are not just simple numbers here, but actual expressions. This is where Yacas shines. It was
built specifically to do calculations that have expressions as answers.

In Yacas after a calculation is done, you can refer to the previous result with . For example, we could first
type (x+1)* (x—1), and then decide we would like to see a simpler version of that expression, and thus type
Simplify (%), which should result in x*2-1.

The special operator $ automatically recalls the result from the previous line. The function Simplify attempts to
reduce an expression to a simpler form. Note that standard function names in Yacas are typically capitalized. Multiple
capitalization such as ArcSin is sometimes used. The underscore character _ is a reserved operator symbol and
cannot be part of variable or function names.

Yacas offers some more powerful symbolic manipulation operations. A few will be shown here to wetten the appetite.
Some simple equation solving algorithms are in place:

e Solve (x/ (1+x) == a, X);

* Solve (x"2+x == 0, Xx);

* Solve (a+x*xy==2z, %) ;
(Note the use of the == operator, which does not evaluate to anything, to denote an “equation” object.)

Taylor series are supported, for example: Taylor (x, 0, 3) Exp (x) is a bodied operator that expands Exp (x) for
x around x=0, up to order 3.

Symbolic manipulation is the main application of Yacas. This is a small tour of the capabilities Yacas currently offers.
Note that this list of examples is far from complete. Yacas contains a few hundred commands, of which only a few are
shown here.

* Expand ((1+x) ~5); (expand the expression into a polynomial)
e Limit (x,0) Sin(x)/x; (calculate the limit of Sin (x) /x as x approaches zero)

e Newton (Sin(x),x,3,0.0001); (use Newton’s method to find the value of x near 3 where Sin (x)
equals zero numerically and stop if the result is closer than 0.0001 to the real result)

e DiagonalMatrix ({a,b,c}); (create a matrix with the elements specified in the vector on the diagonal)
e Integrate(x,a,b) xxSin(x); (integrate a function over variable x, from a to b)

* Factor (x"2-1); (factorize a polynomial)

e Apart (1/(x72-1),x); (create a partial fraction expansion of a polynomial)

e Simplify ((x"2-1)/(x-1)); (simplification of expressions)

e CanProve((a And b) Or (a And Not b)); (special-purpose simplifier that tries to simplify
boolean expressions as much as possible)

e TrigSimpCombine (Cos (a) *Sin (b)) ; (special-purpose simplifier that tries to transform trigonometric
expressions into a form where there are only additions of trigonometric functions involved and no multiplica-
tions)

2.4 Arbitrary precision numbers

Yacas can deal with arbitrary precision numbers. It can work with large integers, like 20! (The ! means factorial,
thus 1x2%3%...%20).

2.4. Arbitrary precision numbers 7

Yacas, Release 1.6.1

As we saw before, rational numbers will stay rational as long as the numerator and denominator are integers, so 55/10
will evaluate to 11 /2. You can override this behavior by using the numerical evaluation function N () . For example,
N (55/10) will evaluate to 5.5 . This behavior holds for most math functions. Yacas will try to maintain an exact
answer (in terms of integers or fractions) instead of using floating point numbers, unless N () is used. Where the value
for the constant pi is needed, use the built-in variable Pi. It will be replaced by the (approximate) numerical value
when N (P1i) is called. Yacas knows some simplification rules using P1i (especially with trigonometric functions).

The function N takes either one or two arguments. It evaluates its first argument and tries to reduce it as much as
possible to a real-valued approximation of the expression. If the second argument is present, it states the number
of digits precision required. Thus N (1/234) returns a number with the current default precision (which starts at
20 digits), but you can request as many digits as you like by passing a second argument, as in N(1/234, 10),
N(1/234, 20),N(1/234, 30), etcetera.

Note that we need to enter N () to force the approximate calculation, otherwise the fraction would have been left
unevaluated.

Revisiting P 1, we can get as many digits of P1 as we like, by providing the precision required as argument to N. So to
get 50 digits precision, we can evaluate N (Pi, 50).

Taking a derivative of a function was amongst the very first of symbolic calculations to be performed by a computer,
as the operation lends itself surprisingly well to being performed automatically. Naturally, it is also implemented in
Yacas, through the function D. D is a <i>bodied</i> function, meaning that its last argument is past the closing brackets.
Where normal functions are called with syntax similar to £ (x, y, z), a bodied function would be called with a syntax
f(x,y)z. Here are two examples of taking a derivative: D (x) Sin(x); (taking a derivative)
*“*D(x) D(x) Sin(x);‘ (taking a derivative twice) The {D} function also accepts an argument specifying
how often the derivative has to be taken. In that case, the above expressions can also be written as: D (x, 1)
Sin (x) ; (taking a derivative) ‘‘D(x,2) Sin(x);‘ (taking a derivative twice)

2.5 Analytic functions

Many of the usual analytic functions have been defined in the Yacas library. Examples are Exp (1), Sin(2),
ArcSin(1/2), Sqrt (2). These will not evaluate to a numeric result in general, unless the result is an integer,
like Sgrt (4). If asked to reduce the result to a numeric approximation with the function N, then <i>Yacas will do
so</i>, as for example in N (Sqrt (2),50).

2.6 Variables

Yacas supports variables. You can set the value of a variable with the : = infix operator, as in a:=1;. The variable
can then be used in expressions, and everywhere where it is referred to, it will be replaced by its value.

To clear a variable binding, execute Clear (a) ;. A variable will evaluate to itself after a call to clear it (so after the
call to clear a above, calling a*‘ should now return a). This is one of the properties of
the evaluation scheme of Yacas; when some object can not be evaluated or transformed any further, it is returned as
the final result.

2.7 Functions

The := operator can also be used to define simple functions: f (x) :=2+x*x. will define a new function, £, that
accepts one argument and returns twice the square of that argument. This function can now be called, £ (a). You can
change the definition of a function by defining it again.

8 Chapter 2. Tutorial

Yacas, Release 1.6.1

One and the same function name such as £ may define different functions if they take different numbers of argu-
ments. One can define a function £ which takes one argument, as for example f (x) :=x"2;, or two arguments,
f (x,y) :=x+y;. If you clicked on both links, both functions should now be defined, and f (a) calls the one func-
tion whereas f (a, b) calls the other.

Yacas is very flexible when it comes to types of mathematical objects. Functions can in general accept or return any
type of argument.

2.8 Boolean expressions and predicates

Yacas predefines True and False as boolean values. Functions returning boolean values are called
<i>predicates</i>. For example, IsNumber () and‘‘ IsInteger()‘‘ are predicates defined in the Yacas environment.
For example, try IsNumber (2+x) ;,or IsInteger (15/5) ;.

There are also comparison operators. Typing 2 > 1 would return True. You can also use the infix operators And and
Or, and the prefix operator Not, to make more complex boolean expressions. For example, try True And False,
True Or False, True And Not (False).

2.9 Strings and lists

In addition to numbers and variables, Yacas supports strings and lists. Strings are simply sequences of characters
enclosed by double quotes, for example: "this is a string with \"quotes\" in it".

Lists are ordered groups of items, as usual. Yacas represents lists by putting the objects between braces and separating
them with commas. The list consisting of objects a, b, and c could be entered by typing {a, b, c}. In Yacas, vectors
are represented as lists and matrices as lists of lists.

Items in a list can be accessed through the [] operator. The first element has index one. Examples: when you enter
uu:={a,b,c,d,e,f}; thenuu[2]; evaluatesto b, and uu[2 .. 4]; evaluatesto {b,c,d}. The “range”
expression 2 .. 4 evaluates to {2,3,4}. Note that spaces around the .. operator are necessary, or else the
parser will not be able to distinguish it from a part of a number.

Lists evaluate their arguments, and return a list with results of evaluating each element. So, typing {1+2, 3}; would
evaluate to {3, 3}.

The idea of using lists to represent expressions dates back to the language LISP developed in the 1970’s. From a small
set of operations on lists, very powerful symbolic manipulation algorithms can be built. Lists can also be used as
function arguments when a variable number of arguments are necessary.

Let’s try some list operations now. First clickonm:={a, b, c}; to setup an initial list to work on. Then click on links
below: ‘‘Length(m);‘‘ (return the length of a list) ‘‘Reverse(m);‘* (return the string reversed)
‘Concat(m,m);‘ (concatenate two strings) *‘m[1]:=d;*‘ (setting the first element of the list to a new
value, d, as can be verified by evaluating m) Many more list operations are described in the reference
manual.

2.10 Writing simplification rules

Mathematical calculations require versatile transformations on symbolic quantities. Instead of trying to define all pos-
sible transformations, Yacas provides a simple and easy to use pattern matching scheme for manipulating expressions
according to user-defined <i>rules</i>. Yacas itself is designed as a small core engine executing a large library of
rules to match and replace patterns.

2.8. Boolean expressions and predicates 9

Yacas, Release 1.6.1

One simple application of pattern-matching rules is to define new functions. (This is actually the only way Yacas
can learn about new functions.) As an example, let’s define a function f that will evaluate factorials of non-negative
integers. We will define a predicate to check whether our argument is indeed a non-negative integer, and we will use
this predicate and the obvious recursion £ (n) =n*f (n-1) if n>0 and 1 if n=0 to evaluate the factorial.

We start with the simple termination condition, which is that £ (n) should return one if n is zero: **10 # f(0)
<— 1;°“ You can verify that this already works for input value zero, with £ (0) .

Now we come to the more complex line, *‘20 # f(n_IsIntegerGreaterThanZero) <— n*f(n-1);*‘
 Now we realize we need a function IsGreaterThanZero, so we define this function, with
*‘IsIntegerGreaterThanZero(_n) <— (IsInteger(n) And n>0);‘‘ You can verify that it works by
trying £ (5), which should return the same value as 5!.

In the above example we have first defined two “simplification rules” for a new function f (). Then
we realized that we need to define a predicate IsIntegerGreaterThanZero (). A predicate equiva-
lent to IsIntegerGreaterThanZero () is actually already defined in the standard library and it’s called
IsPositiveInteger, so it was not necessary, strictly speaking, to define our own predicate to do the same thing.
We did it here just for illustration purposes.

The first two lines recursively define a factorial function £ (n) =n=* (n-1) . .. 1. The rules are given precedence
values 10 and 20, so the first rule will be applied first. Incidentally, the factorial is also defined in the standard library
as a postfix operator ! and it is bound to an internal routine much faster than the recursion in our example. The example
does show how to create your own routine with a few lines of code. One of the design goals of Yacas was to allow
precisely that, definition of a new function with very little effort.

The operator &1t ; —— defines a rule to be applied to a specific function. (The &1t ; —— operation cannot be applied to
an atom.) The _n in the rule for IsIntegerGreaterThanZero () specifies that any object which happens to be
the argument of that predicate is matched and assigned to the local variable n. The expression to the right of &1t ; ——
can use n (without the underscore) as a variable.

Now we consider the rules for the function £. The first rule just specifies that £ (0) should be replaced by 1 in
any expression. The second rule is a little more involved. n_IsIntegerGreaterThanZero is a match for
the argument of £, with the proviso that the predicate IsIntegerGreaterThanZero (n) should return True,
otherwise the pattern is not matched. The underscore operator is to be used only on the left hand side of the rule
definition operator &1t ; ——.

There is another, slightly longer but equivalent way of writing the second rule: *20 #
f(_n)_(IsIntegerGreaterThanZero(n)) <— n*f(n-1);‘‘ The underscore after the function object de-
notes a “postpredicate” that should return True or else there is no match. This predicate may be a compli-
cated expression involving several logical operations, unlike the simple checking of just one predicate in the
n_IsIntegerGreaterThanZero construct. The postpredicate can also use the variable n (without the under-
score).

Precedence values for rules are given by a number followed by the # infix operator (and the transformation rule after
it). This number determines the ordering of precedence for the pattern matching rules, with O the lowest allowed
precedence value, i.e. rules with precedence 0 will be tried first. Multiple rules can have the same number: this just
means that it doesn’t matter what order these patterns are tried in. If no number is supplied, O is assumed. In our
example, the rule £ (0) &1t;-— 1 must be applied earlier than the recursive rule, or else the recursion will never
terminate. But as long as there are no other rules concerning the function £, the assignment of numbers 10 and 20 is
arbitrary, and they could have been 500 and 501 just as well. It is usually a good idea however to keep some space
between these numbers, so you have room to insert new transformation rules later on.

Predicates can be combined: for example, {IsIntegerGreaterThanZero()} could also have been defined
as: *“10 # IsIntegerGreaterThanZero(n_IsInteger)_(n>0) <— True; ‘ *20 # IsInte-
gerGreaterThanZero(_n) <— False;‘‘ The first rule specifies that if n is an integer, and is greater than
zero, the result is True, and the second rule states that otherwise (when the rule with precedence 10 did not apply)
the predicate returns False.

In the above example, the expression n > O is added after the pattern and allows the pattern to match only if

10 Chapter 2. Tutorial

Yacas, Release 1.6.1

this predicate return True. This is a useful syntax for defining rules with complicated predicates. There is no dif-
ference between the rules‘‘ F(n_IsPositivelnteger) <—...*“ and F (_n) _ (IsPositiveInteger (n)) <-——
. except that the first syntax is a little more concise.

The left hand side of a rule expression has the following form:

<i>precedence</i> # <i>pattern</i> _ <i>postpredicate</i> <-- <i>replacement</i> ;

The optional precedence must be a positive integer.

Some more examples of rules (not made clickable because their equivalents are already in the basic Yacas library):
 “10 # _x + 0 <— x;““ *20 # _x - _x <— 0;°‘ *‘ArcSin(Sin(_x)) <— x;“‘
The last rule has no explicit precedence specified in it (the precedence zero will be assigned automatically by the
system).

Yacas will first try to match the pattern as a template. Names preceded or followed by an underscore can match any one
object: a number, a function, a list, etc. Yacas will assign the relevant variables as local variables within the rule, and
try the predicates as stated in the pattern. The post-predicate (defined after the pattern) is tried after all these matched.
As an example, the simplification rule _x - _x &1t;—-0 specifies that the two objects at left and at right of the
minus sign should be the same for this transformation rule to apply.

2.11 Local simplification rules

Sometimes you have an expression, and you want to use specific simplification rules on it that should not be universally
applied. This can be done with the / : and the / : : operators. Suppose we have the expression containing things such
as Ln (a*b), and we want to change these into Ln (a) +Ln (b) . The easiest way to do this is using the / : operator
as follows:

* Sin(x) xLn (a*b) (example expression without simplification)
* Sin(x)*Ln(a*b) /: {Ln(_x*_y) <- Ln(x)+Ln(y) } (with instruction to simplify the expres-
sion)
A whole list of simplification rules can be built up in the list, and they will be applied to the expression on the left

hand side of / :.

Note that for these local rules, &1t ; — should be used instead of &1t; ——. Using latter would result in a global
definition of a new transformation rule on evaluation, which is not the intention.

The / : operator traverses an expression from the top down, trying to apply the rules from the beginning of the list of
rules to the end of the list of rules. If no rules can be applied to the whole expression, it will try the sub-expressions of
the expression being analyzed.

It might be sometimes necessary to use the /: : operator, which repeatedly applies the /: operator until the result
does not change any more. Caution is required, since rules can contradict each other, and that could result in an infinite
loop. To detect this situation, just use / : repeatedly on the expression. The repetitive nature should become apparent.

2.12 Programming essentials

An important feature of Yacas is its programming language which allows you to create your own programs for doing
calculations. This section describes some constructs and functions for control flow.

Looping can be done with the function ForEach. There are more options, but ForEach is the simplest to use for
now and will suffice for this turorial. The statement form ForEach (x, list) body executes its body for each
element of the list and assigns the variable x to that element each time. The statement form While (predicate)

2.11. Local simplification rules 11

Yacas, Release 1.6.1

body repeats execution of the expression represented by body until evaluation of the expression represented by
predicate returns False.

This example loops over the integers from one to three, and writes out a line for each, multiplying the integer by
3 and displaying the result with the function Echo: ForEach(x,1 .. 5) Echo(x," times 3 equals
", 3%x);

2.12.1 Compound statements

Multiple statements can be grouped together using the [and] brackets. The compound [a; Echo ("In the
middle"™); 1+2;]; evaluates a, then the Echo command, and finally evaluates 1+2, and returns the result of
evaluating the last statement 1+2.

A variable can be declared local to a compound statement block by the function Local (varl, var2, ...).For
example, if you execute [Local (v);v:=1+2;v;]; the result will be 3. The program body created a variable
called v, assigned the value of evaluating 1+2 to it, and made sure the contents of the variable v were returned. If you
now evaluate v afterwards you will notice that the variable v is not bound to a value any more. The variable v was
defined locally in the program body between the two square brackets [and] .

Conditional execution is implemented by the If (predicate, bodyl, body2) function call. If the expression
predicate evaluates to True, the expression represented by body1 is evaluated, otherwise body?2 is evaluated,
and the corresponding value is returned. For example, the absolute value of a number can be computed with: f (x)
= If(x < 0,-x,x); (note that there already is a standard library function that calculates the absolute value of
a number).

Variables can also be made to be local to a small set of functions, with LocalSymbols (variables)
body. For example, the following code snippet: LocalSymbols (a,b) [a:=0;b:=0;
inc():=[a:=a+l;b:=b-1;show();]; show():=Echo("a = ",a," b = ",b); 1; defines
two functions, inc and show. Calling inc () repeatedly increments a and decrements b, and calling show ()
then shows the result (the function “inc” also calls the function “show”, but the purpose of this example is to show
how two functions can share the same variable while the outside world cannot get at that variable). The variables
are local to these two functions, as you can see by evaluating a and b outside the scope of these two functions. This
feature is very important when writing a larger body of code, where you want to be able to guarantee that there are no
unintended side-effects due to two bits of code defined in different files accidentally using the same global variable.

To illustrate these features, let us create a list of all even integers from 2 to 20 and compute the product of all those
integers except those divisible by 3

[
Local (L, i, answer);
L:={}; 1:=2;
/*Make a list of all even integers from 2 to 20 x/

While (i <= 20) [L := Append(L, i); i =1 + 2; 1;

/* Now calculate the product of all of these numbers that are not divisible by 3 */
answer := 1;

ForEach(i,L) If (Mod(i, 3) != 0, answer := answer x 1);

/* And return the answer =/

answer;

17

(Note that it is not necessarily the most economical way to do it in Yacas.)

We used a shorter form of If (predicate, body) with only one body which is executed when the condition
holds. If the condition does not hold, this function call returns False. We also introduced comments, which can be
placed between /x and = /. Yacas will ignore anything between those two. When putting a program in a file you can
also use / /. Everything after // up until the end of the line will be a comment. Also shown is the use of the While
function. Its formis While (predicate) body. While the expression represented by predicate evaluates to
True, the expression represented by body will keep on being evaluated.

12 Chapter 2. Tutorial

Yacas, Release 1.6.1

The above example is not the shortest possible way to write out the algorithm. It is written out in a procedural way,
where the program explains step by step what the computer should do. There is nothing fundamentally wrong with the
approach of writing down a program in a procedural way, but the symbolic nature of Yacas also allows you to write it
in a more concise, elegant, compact way, by combining function calls.

There is nothing wrong with procedural style, but there is amore ‘functional’ approach to the same problem would go
as follows below. The advantage of the functional approach is that it is shorter and more concise (the difference is
cosmetic mostly).

Before we show how to do the same calculation in a functional style, we need to explain what a pure function
is, as you will need it a lot when programming in a functional style. We will jump in with an example that
should be self-explanatory. Consider the expression Lambda ({x, v}, x+y). This has two arguments, the first
listing x and y, and the second an expression. We can use this construct with the function Apply as follows:
Apply (Lambda ({x,v},x+y), {2, 3}). The result should be 5, the result of adding 2 and 3. The expres-
sion starting with Lambda is essentially a prescription for a specific operation, where it is stated that it accepts 2
arguments, and returns the arguments added together. In this case, since the operation was so simple, we could also
have used the name of a function to apply the arguments to, the addition operator in this case Apply ("+", {2, 3}).
When the operations become more complex however, the Lambda construct becomes more useful.

Now we are ready to do the same example using a functional approach. First, let us construct a list with all even
numbers from 2 to 20. For this we use the . . operator to set up all numbers from one to ten, and then multiply that
withtwo: 2 » (1 .. 10).

Now we want an expression that returns all the even numbers up to 20 which are not divisible by 3. For this we can
use Select, which takes as first argument a predicate that should return True if the list item is to be accepted, and
False otherwise, and as second argument the list in question: Select (Lambda ({n},Mod (n,3) !=0),2x (1

10)). The numbers 6, 12 and 18 have been correctly filtered out. Here you see one example of a pure function
where the operation is a little bit more complex.

All that remains is to factor the items in this list. For this we can use UnFlatten. Two examples of the use of
UnFlatten are

* UnFlatten({a,b,c},"x",1)
* UnFlatten({a,b,c},"+",0)

The 0 and 1 are a base element to start with when grouping the arguments in to an expression (they should be the
respective identity elements, hence it is zero for addition and 1 for multiplication).

Now we have all the ingredients to finally do the same calculation we did above in a procedural way, but this time we
can do it in a functional style, and thus captured in one concise single line:

UnFlatten (Select (Lambda ({n},Mod (n,3) !'=0),2%x(1 .. 10)),"«",1)

As was mentioned before, the choice between the two is mostly a matter of style.

2.13 Macros

One of the powerful constructs in Yacas is the construct of a macro. In its essence, a macro is a prescription to
create another program before executing the program. An example perhaps explains it best. Evaluate the following
expression Macro (for, {st,pr,in,bd}) [(Q@st);While (@pr) [(@bd); (@in); 1;1;. This expression
defines a macro that allows for looping. Yacas has a For function already, but this is how it could be defined in one
line (In Yacas the For function is bodied, we left that out here for clarity, as the example is about macros).

To see it work just type for (1:=0,1i&1t;3,1i:=i+1,Echo (i)). You will see the count from one to three.

The construct works as follows; The expression defining the macro sets up a macro named for with four arguments.
On the right is the body of the macro. This body contains expressions of the form @var. These are replaced by the

2.13. Macros 13

http://en.wikipedia.org/wiki/Identity_element

Yacas, Release 1.6.1

values passed in on calling the macro. After all the variables have been replaced, the resulting expression is evaluated.
In effect a new program has been created. Such macro constructs come from LISP, and are famous for allowing you
to almost design your own programming language constructs just for your own problem at hand. When used right,
macros can greatly simplify the task of writing a program.

You can also use the back-quote * to expand a macro in-place. It takes on the form ‘ (expression), where the
expression can again contain sub-expressions of the form @variable. These instances will be replaced with the
values of these variables.

2.14 The practice of programming in Yacas

When you become more proficient in working with Yacas you will be doing more and more sophisticated calculations.
For such calculations it is generally necessary to write little programs. In real life you will usually write these programs
in a text editor, and then start Yacas, load the text file you just wrote, and try out the calculation. Generally this is an
iterative process, where you go back to the text editor to modify something, and then go back to Yacas, type restart
and then reload the file.

On this site you can run Yacas in a little window called a Yacas calculation center (the same as the one below this
tutorial). On page there is tab that contains a Yacas calculation center. If you click on that tab you will be directed
to a larger calculation center than the one below this tutorial. In this page you can easily switch between doing a
calculation and editing a program to load at startup. We tried to make the experience match the general use of Yacas
on a desktop as much as possible. The Yacas journal (which you see when you go to the Yacas web site) contains
examples of calculations done before by others.

2.15 Defining your own operators

Large part of the Yacas system is defined in the scripting language itself. This includes the definitions of the operators
it accepts, and their precedences. This means that you too can define your own operators. This section shows you how
to do that.

Suppose we wanted to define a function F (x, v) =x/y+y/x. We could use the standard syntax F (a,b) := a/b
+ b/a;. F(1,2);. For the purpose of this demonstration, lets assume that we want to define an infix operator xx
for this operation. We can teach Yacas about this infix operator with Infix ("xx", OpPrecedence ("/"));.
Here we told Yacas that the operator xx is to have the same precedence as the division operator. We can now proceed
to tell Yacas how to evaluate expressions involving the operator xx by defining it as we would with a function, a xx
b := a/b + b/a;.

You can verify for yourself 3 xx 2 + 1; and 1 + 3 xx 2; return the same value, and that they follow the
precedence rules (eg. xx binds stronger than +).

We have chosen the name xx just to show that we don’t need to use the special characters in the infix operator’s name.
However we must define this operator as infix before using it in expressions, otherwise Yacas will raise a syntax error.

Finally, we might decide to be completely flexible with this important function and also define it as a mathematical
operator ## . First we define ## as a <i>bodied</i> function and then proceed as before. First we can tell Yacas
that ## is a bodied operator with Bodied ("##", OpPrecedence ("/")) ;. Then we define the function itself:
##(a) b := a xx b;.Andnow we can use the function, ## (1) 3 + 2;.

We have used the name ## but we could have used any other name such as xx or F or even _—+@+—_. Apart from
possibly confusing yourself, it doesn’t matter what you call the functions you define.

There is currently one limitation in Yacas: once a function name is declared as infix (prefix, postfix) or bodied, it will
always be interpreted that way. If we declare a function £ to be bodied, we may later define different functions named
£ with different numbers of arguments, however all of these functions must be bodied.

14 Chapter 2. Tutorial

Yacas, Release 1.6.1

When you use infix operators and either a prefix of postfix operator next to it you can run in to a situation where Yacas
can not quite figure out what you typed. This happens when the operators are right next to each other and all consist
of symbols (and could thus in principle form a single operator). Yacas will raise an error in that case. This can be
avoided by inserting spaces.

2.16 Some assorted programming topics

One use of lists is the associative list, sometimes called a dictionary in other programming languages, which is im-
plemented in Yacas simply as a list of key-value pairs. Keys must be strings and values may be any objects. As-
sociative lists can also work as mini-databases, where a name is associated to an object. As an example, first enter
record:={}; toset up an empty record. After that, we can fill arbitrary fields in this record:

record["name"] :="Isaia";
record|["occupation"] :="prophet";
record["is alive"]:=False;

Now, evaluating record["name"] should result in the answer "Isaia". The record is now a list that contains
three sublists, as you can see by evaluating record.

Assignment of multiple variables is also possible using lists. For instance, evaluating {x, y}:={2!, 3!} will result
in 2 being assigned to x and 6 to y.

When assigning variables, the right hand side is evaluated before it is assigned. Thus a:=2x2 will set a to 4. This
is however <i>not</i> the case for functions. When entering f (x) :=x+x the right hand side, x+x, is not evaluated
before being assigned. This can be forced by using Eval (). Defining £ (x) with £ (x) :=Eval (x+x) will tell the
system to first evaluate x+x (which results in 2« x) before assigning it to the user function f£. This specific example
is not a very useful one but it will come in handy when the operation being performed on the right hand side is
expensive. For example, if we evaluate a Taylor series expansion before assigning it to the user-defined function, the
engine doesn’t need to create the Taylor series expansion each time that user-defined function is called.

The imaginary unit i is denoted I and complex numbers can be entered as either expressions involving I, as for
example 1+I«2, or explicitly as Complex (a, b) for a+ib. The form Complex (re, im) is the way Yacas deals
with complex numbers internally.

2.17 Linear Algebra

Vectors of fixed dimension are represented as lists of their components. The list {1, 2+x, 3%Sin(p) } would be
a three-dimensional vector with components 1, 2+x and 3«Sin (p) . Matrices are represented as a lists of lists.

Vector components can be assigned values just like list items, since they are in fact list items. If we first set up a
variable called “vector” to contain a three-dimensional vector with the command vector:=ZeroVector (3);
(you can verify that it is indeed a vector with all components set to zero by evaluating vector), you can change
elements of the vector just like you would the elements of a list (seeing as it is represented as a list). For example, to
set the second element to two, just evaluate vector [2] := 2;. This results in a new value for vector.

Yacas can perform multiplication of matrices, vectors and numbers as usual in linear algebra. The standard Yacas
script library also includes taking the determinant and inverse of a matrix, finding eigenvectors and eigenvalues (in
simple cases) and solving linear sets of equations, such as A * x = b where A is a matrix, and x and b are vectors. As a
little example to wetten your appetite, we define a Hilbert matrix: hilbert :=HilbertMatrix (3). We can then
calculate the determinant with Determinant (hilbert), or the inverse with Inverse (hilbert). There are
several more matrix operations supported. See the reference manual for more details.

2.16. Some assorted programming topics 15

Yacas, Release 1.6.1

2.17.1 “Threading” of functions

Some functions in Yacas can be “threaded”. This means that calling the function with a list as argument will
result in a list with that function being called on each item in the list. E.g. Sin({a,b,c}); will result in
{Sin(a),Sin(b),Sin(c) }. This functionality is implemented for most normal analytic functions and arith-
metic operators.

2.17.2 Functions as lists

For some work it pays to understand how things work under the hood. Internally, Yacas represents all atomic expres-
sions (numbers and variables) as strings and all compound expressions as lists, like Lisp. Try FullForm (a+b+*c) ;
and you will see the text (+ a (x* b c)) appear on the screen. This function is occasionally useful, for example
when trying to figure out why a specific transformation rule does not work on a specific expression.

If you try FullForm (1+2) you will see that the result is not quite what we intended. The system first adds up
one and two, and then shows the tree structure of the end result, which is a simple number 3. To stop Yacas from
evaluating something, you can use the function Hold, as FullForm (Hold (1+2)). The function Eval is the
opposite, it instructs Yacas to re-evaluate its argument (effectively evaluating it twice). This undoes the effect of
Hold, as for example Eval (Hold (1+2)).

Also, any expression can be converted to a list by the function Listify or back to an expression by the function
UnList:

e Listify (a+bx* (c+d));
e UnList ({Atom("+"),x,1});

Note that the first element of the list is the name of the function + which is equivalently represented as Atom ("+")
and that the subexpression b+ (c+d) was not converted to list form. Listify just took the top node of the expression.

16 Chapter 2. Tutorial

CHAPTER 3

Reference Manual

{Yacas} (Yet Another Computer Algebra System) is a small and highly flexible general-purpose computer algebra
system and programming language. The language has a familiar, C-like infix-operator syntax. The distribution con-
tains a small library of mathematical functions, but its real strength is in the language in which you can easily write
your own symbolic manipulation algorithms. The core engine supports arbitrary precision arithmetic, and is able to
execute symbolic manipulations on various mathematical objects by following user-defined rules.

This document describes the functions that are useful in the context of using { Yacas} as an end user. It is recommended
to first read the online interactive tutorial to get acquainted with the basic language constructs first. This document
expands on the tutorial by explaining the usage of the functions that are useful when doing calculations.

3.1 Arithmetic and other operations on numbers

X+y
addition

Addition can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Hint: Addition is implemented in the standard math library (as opposed to being built-in). This means that it
can be extended by the user.

Example

In> 2+3
Out> 5

-X
negation

Negation can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Hint: Negation is implemented in the standard math library (as opposed to being built-in). This means that it
can be extended by the user.

Example

17

Yacas, Release 1.6.1

In> — 3

OQut> -3
X=y

subtraction

Subtraction can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Hint: Subtraction is implemented in the standard math library (as opposed to being built-in). This means that
it can be extended by the user.

Example

In> 2-3
Out> -1

X*Yy

multiplication

Multiplication can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Note: In the case of matrices, multiplication is defined in terms of standard matrix product.

Hint: Multiplication is implemented in the standard math library (as opposed to being built-in). This means
that it can be extended by the user.

Example

In> 2%3
Oout> 6

x/y

division

Division can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Note: For matrices division is element-wise.

Hint: Division is implemented in the standard math library (as opposed to being built-in). This means that it
can be extended by the user.

Example
In> 6/2
Out> 3
X"y
exponentiation
18 Chapter 3. Reference Manual

Yacas, Release 1.6.1

Exponentiation can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Note: In the case of matrices, exponentiation is defined in terms of standard matrix product.

Hint: Exponentiation is implemented in the standard math library (as opposed to being built-in). This means
that it can be extended by the user.

Example

In> 273
Out> 8

Div (x,y)
determine divisor

Div () performs integer division. If Div (x, y) returns a and Mod (x, y) equals b, then these numbers satisfy
r=ay-+band0<b<y.

Example

In> Div (5, 3)
Out> 1

See also:
Mod (), Gecd (), Lem ()
Mod (x, y)
determine remainder

Mod () returns the division remainder. If Div (x, y) returns a and Mod (x,y) equals b, then these numbers
satisfyx =ay +band 0 < b < y.

Example

In> Div (5, 3)
Out> 1
In> Mod (5, 3)
out> 2

See also:
Div(),Gecd (), Lcm()

Ged (n, m)
Ged (list)
greatest common divisor

This function returns the greatest common divisor of n and m or of all elements of 1ist.
See also:
Lcm ()

Lem (n, m)
Lem (list)
least common multiple

This command returns the least common multiple of n and m or of all elements of 1ist.

3.1. Arithmetic and other operations on numbers 19

https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Least_common_multiple

Yacas, Release 1.6.1

Example

In> Lcm(60,24)

Out> 120
In> Lem({3,5,7,9})
Out> 315
See also:
Ged ()
n<<m
n>>m

binary shift operators

These operators shift integers to the left or to the right. They are similar to the C shift operators. These are
sign-extended shifts, so they act as multiplication or division by powers of 2.

Example

In> 1 << 10
Out> 1024

In> -1024 >> 10
Out> -1

FromBase (base, “string”)

conversion of a number from non-decimal base to decimal base
Param base integer, base to convert to/from
Param number integer, number to write out in a different base
Param “string” string representing a number in a different base

In Yacas, all numbers are written in decimal notation (base 10). The two functions {FromBase}, {ToBase}
convert numbers between base 10 and a different base. Numbers in non-decimal notation are represented by
strings. {FromBase} converts an integer, written as a string in base {base}, to base 10. {ToBase} converts
{number}, written in base 10, to base {base}.

N (expression)

try determine numerical approximation of expression
Param expression expression to evaluate
Param precision integer, precision to use

The function N () instructs yacas to try to coerce an expression in to a numerical approximation to the expression
expr, using prec digits precision if the second calling sequence is used, and the default precision otherwise.
This overrides the normal behaviour, in which expressions are kept in symbolic form (eg. Sqrt (2) instead
of 1.41421). Application of the N () operator will make yacas calculate floating point representations of
functions whenever possible. In addition, the variable Pi is bound to the value of 7 calculated at the current
precision.

Note: N () is a macro. Its argument expr will only be evaluated after switching to numeric mode.

Example

In> 1/2
out> 1/2;
In> N(1/2)

20

Chapter 3. Reference Manual

Yacas, Release 1.6.1

OQut> 0.5;

In> Sin (1)

Out> Sin(1);

In> N(Sin(1l),10)

Out> 0.8414709848;

In> Pi

Oout> Pij;

In> N(Pi, 20)

Out> 3.14159265358979323846;

See also:

Pif()

Rationalize (expr)

convert floating point numbers to fractions
Param expr an expression containing real numbers

This command converts every real number in the expression “expr” into a rational number. This is useful when
a calculation needs to be done on floating point numbers and the algorithm is unstable. Converting the floating
point numbers to rational numbers will force calculations to be done with infinite precision (by using rational
numbers as representations). It does this by finding the smallest integer n such that multiplying the number
with $10”n$ is an integer. Then it divides by $10”n$ again, depending on the internal ged calculation to reduce
the resulting division of integers.

Example

In> {1.2,3.123,4.5}

Out> {1.2,3.123,4.5};

In> Rationalize (%)

Out> {6/5,3123/1000,9/2};

See also:

IsRational ()

ContFrac (x[, depth=6])

continued fraction expansion
Param x number or polynomial to expand in continued fractions
Param depth positive integer, maximum required depth

This command returns the continued fraction expansion of x, which should be either a floating point number
or a polynomial. The remainder is denoted by {rest}. This is especially useful for polynomials, since series
expansions that converge slowly will typically converge a lot faster if calculated using a continued fraction
expansion.

Example

In> PrettyForm(ContFrac(N(Pi)))

3.1.

Arithmetic and other operations on numbers 21

Yacas, Release 1.6.1

rest + 1
Out> True;
In> PrettyForm(ContFrac (x"2+x+1, 3))

rest + 1
Out> True;

See also:

PAdicExpand(),N()

Decimal (frac)

decimal representation of a rational
Param frac a rational number

This function returns the infinite decimal representation of a rational number {frac}. It returns a list, with the
first element being the number before the decimal point and the last element the sequence of digits that will
repeat forever. All the intermediate list elements are the initial digits before the period sets in.

Example

In> Decimal (1/22)

out> {0,0,{4,5}};

In> N(1/22,30)

Out> 0.045454545454545454545454545454;

See also:

N()

Floor (x)

round a number downwards
Param x a number
This function returns | z], the largest integer smaller than or equal to x.

Example

In> Floor(1l.1)
Out> 1;

In> Floor(—-1.1)
out> -2;

See also:

Ceil (), Round/()

Ceil (x)

round a number upwards
Param x a number
This function returns [xz], the smallest integer larger than or equal to x.

Example

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> Ceil(1.1)
Oout> 2;

In> Ceil(-1.1)
Out> -1;

See also:
Floor (), Round/()

Round (x)
round a number to the nearest integer

Param x a number

This function returns the integer closest to x. Half-integers (i.e. numbers of the form $n + 0.5$, with n an
integer) are rounded upwards.

Example

In> Round(1.49)
Out> 1;

In> Round(1.51)
out> 2;

In> Round(-1.49)
Out> -1;

In> Round(-1.51)
out> -2;

See also:
Floor(),Ceil()

Min (x,y)
minimum of a number of values

Param x}, {y pair of values to determine the minimum of
Param list list of values from which the minimum is sought

This function returns the minimum value of its argument(s). If the first calling sequence is used, the smaller of

“x” and “y” is returned. If one uses the second form, the smallest of the entries in “list” is returned. In both
cases, this function can only be used with numerical values and not with symbolic arguments.

Example

In> Min (2, 3);
out> 2;

In> Min({5,8,4});
Oout> 4;

See also:
Max (), Sum ()

Max (x, y)
maximum of a number of values

Param x}, {y pair of values to determine the maximum of
Param list list of values from which the maximum is sought

This function returns the maximum value of its argument(s). If the first calling sequence is used, the larger of

“x” and “y” is returned. If one uses the second form, the largest of the entries in “list” is returned. In both cases,
this function can only be used with numerical values and not with symbolic arguments.

3.1. Arithmetic and other operations on numbers 23

Yacas, Release 1.6.1

Example

In> Max(2,3);
Out> 3;

In> Max ({5,8,4});
Oout> 8;

See also:

Min (), Sum()

Numer (expr)

numerator of an expression
Param expr expression to determine numerator of

This function determines the numerator of the rational expression expr and returns it. As a special case, if its
argument is numeric but not rational, it returns this number. If expr is neither rational nor numeric, the function
returns unevaluated.

Example

In> Numer (2/7)
out> 2;

In> Numer (a / x"2)
Out> a;

In> Numer (5)

Out> 5;

See also:

Denom (), IsRational (), IsNumber ()

Denom (expr)

denominator of an expression
Param expr expression to determine denominator of

This function determines the denominator of the rational expression expr and returns it. As a special case, if its
argument is numeric but not rational, it returns 1. If expr is neither rational nor numeric, the function returns
unevaluated.

Example

In> Denom(2/7)
out> 7;

In> Denom(a / x"2)
out> x"2;

In> Denom(5)

out> 1;

See also:

Numer (), IsRational (), IsNumber ()

Pslq (xlist, precision)

search for integer relations between reals
Param xlist list of numbers
Param precision required number of digits precision of calculation

This function is an integer relation detection algorithm. This means that, given the numbers z; in the list x1ist,
it tries to find integer coefficients a; such that a; * 2« + ... + a, * x, = 0. The list of integer coefficients is

24

Chapter 3. Reference Manual

Yacas, Release 1.6.1

returned. The numbers in “xlist” must evaluate to floating point numbers when the NV () operator is applied to
them.

el <e2
test for “less than”

Param el expression to be compared
Param e2 expression to be compared

The two expression are evaluated. If both results are numeric, they are compared. If the first expression is smaller
than the second one, the result is True and it is F'alse otherwise. If either of the expression is not numeric,
after evaluation, the expression is returned with evaluated arguments. The word “numeric” in the previous
paragraph has the following meaning. An expression is numeric if it is either a number (i.e. {IsNumber} returns
True), or the quotient of two numbers, or an infinity (i.e. {IsInfinity} returns True). Yacas will try to coerce
the arguments passed to this comparison operator to a real value before making the comparison.

Example

In> 2 < 5;
Oout> True;
In> Cos(l) < 5;
Out> True;

See also:
IsNumber (), IsInfinity(),N()

el >e2
test for “greater than”

Param el expression to be compared
Param e2 expression to be compared

The two expression are evaluated. If both results are numeric, they are compared. If the first expression is larger
than the second one, the result is True and it is Fa lse otherwise. If either of the expression is not numeric,
after evaluation, the expression is returned with evaluated arguments. The word “numeric” in the previous
paragraph has the following meaning. An expression is numeric if it is either a number (i.e. {IsNumber} returns
True), or the quotient of two numbers, or an infinity (i.e. {IsInfinity} returns True). Yacas will try to coerce
the arguments passed to this comparison operator to a real value before making the comparison.

Example

In> 2 > 5;
Out> False;
In> Cos (1) > 5;
Out> False

See also:
IsNumber (), IsInfinity(),N()

el <=e2
test for “less or equal”

Param el expression to be compared
Param e2 expression to be compared

The two expression are evaluated. If both results are numeric, they are compared. If the first expression is
smaller than or equals the second one, the result is True and it is Fa I se otherwise. If either of the expression
is not numeric, after evaluation, the expression is returned with evaluated arguments. The word “numeric”
in the previous paragraph has the following meaning. An expression is numeric if it is either a number (i.e.

3.1. Arithmetic and other operations on numbers 25

Yacas, Release 1.6.1

{IsNumber} returns True), or the quotient of two numbers, or an infinity (i.e. {IsInfinity} returns True).
Yacas will try to coerce the arguments passed to this comparison operator to a real value before making the
comparison.

Example

In> 2 <= 5;

Oout> True;

In> Cos(l) <= 5;
Out> True

See also:
IsNumber (), IsInfinity(),N()

el >=e2
test for “greater or equal”

Param el expression to be compared
Param e2 expression to be compared

The two expression are evaluated. If both results are numeric, they are compared. If the first expression is
larger than or equals the second one, the result is True and it is F'alse otherwise. If either of the expression
is not numeric, after evaluation, the expression is returned with evaluated arguments. The word “numeric”
in the previous paragraph has the following meaning. An expression is numeric if it is either a number (i.e.
{IsNumber} returns True), or the quotient of two numbers, or an infinity (i.e. {IsInfinity} returns True).
Yacas will try to coerce the arguments passed to this comparison operator to a real value before making the
comparison.

Example

In> 2 >= 5;
Out> False;
In> Cos(l) >= 5;
Out> False

See also:
IsNumber (), IsInfinity (), N()

IsZero (n)
test whether argument is zero

Param n number to test
IsZero (n) evaluates to True if n is zero. In case n is not a number, the function returns False.

Example

In> IsZero(3.25)
Out> False;

In> IsZero (0)
Out> True;

In> IsZero (x)
Out> False;

See also:
IsNumber (), IsNotZero ()

IsRational (expr)
test whether argument is a rational

26 Chapter 3. Reference Manual

Yacas, Release 1.6.1

Param expr expression to test

This commands tests whether the expression “expr” is a rational number, i.e. an integer or a fraction of integers.

Example

In> IsRational (5)

Out> False;

In> IsRational (2/7)
Out> True;

In> IsRational (0.5)
Out> False;

In> IsRational (a/b)
Out> False;

In> IsRational(x + 1/x)
Out> False;

See also:

Numer (), Denom ()

3.2 Calculus and elementary functions

In this chapter, some facilities for doing calculus are described. These include functions implementing differentiation,
integration, standard mathematical functions, and solving of equations.

Sin (x)
trigonometric sine function

Param x argument to the function, in radians

This function represents the trigonometric function sine. Yacas leaves expressions alone even if x is a number,
trying to keep the result as exact as possible. The floating point approximations of these functions can be forced
by using the {N} function. Yacas knows some trigonometric identities, so it can simplify to exact results even if
{N} is not used. This is the case, for instance, when the argument is a multiple of Pi/6 or Pi/4.

Sin () is threaded.

Example

In> Sin (1)

OQut> Sin(1);

In> N(Sin(1),20)

Out> 0.84147098480789650665;
In> Sin(Pi/4)

Oout> Sqgrt (2)/2;

See also:
Cos (), Tan(),ArcSin(),ArcCos(),ArcTan(),N(),Pi ()

Cos (x)
trigonometric cosine function

Param x argument to the function, in radians

This function represents the trigonometric function cosine. Yacas leaves expressions alone even if x is a number,
trying to keep the result as exact as possible. The floating point approximations of these functions can be forced
by using the {N} function. Yacas knows some trigonometric identities, so it can simplify to exact results even
if {N} is not used. This is the case, for instance, when the argument is a multiple of Pi/6 or Pi/4. These
functions are threaded, meaning that if the argument {x} is a list, the function is applied to all entries in the list.

3.2. Calculus and elementary functions 27

Yacas, Release 1.6.1

Cos () is threaded.

Example

In> Cos (1)

Out> Cos (1) ;

In> N(Cos(1l),20)

Out> 0.5403023058681397174;
In> Cos(Pi/4)

out> Sqrt (1/2);

See also:

Sin(), Tan(),ArcSin(),ArcCos (),ArcTan(),N(),Pi()

Tan (x)

trigonometric tangent function
Param x argument to the function, in radians

This function represents the trigonometric function tangent. Yacas leaves expressions alone even if x is a number,
trying to keep the result as exact as possible. The floating point approximations of these functions can be forced
by using the {N} function. Yacas knows some trigonometric identities, so it can simplify to exact results even
if {N} is not used. This is the case, for instance, when the argument is a multiple of Pi/6 or Pi/4. These
functions are threaded, meaning that if the argument {x} is a list, the function is applied to all entries in the list.

Example

In> Tan (1)

Out> Tan (1) ;

In> N(Tan(1l),20)

Qut> 1.5574077246549022305;
In> Tan(Pi/4)

Oout> 1;

See also:

Sin(),Cos(),ArcSin(),ArcCos(),ArcTan(),N(),Pi ()

ArcSin (x)

inverse trigonometric function arc-sine
Param x argument to the function

This function represents the inverse trigonometric function arcsine. For instance, the value of $ArcSin(x)$ is a
number y such that $Sin(y)$ equals x. Note that the number y is not unique. For instance, $Sin(0)$ and
$Sin(Pi)$ both equal 0, so what should $ArcSin(0)$ be? In Yacas, it is agreed that the value of $ArcSin(x)$
should be in the interval [-Pi/2,Pi/2]. Usually, Yacas leaves this function alone unless it is forced to do
a numerical evaluation by the {N} function. If the argument is -1, 0, or 1 however, Yacas will simplify the
expression. If the argument is complex, the expression will be rewritten using the {Ln} function. This function
is threaded, meaning that if the argument {x} is a list, the function is applied to all entries in the list.

Example

In> ArcSin (1)

out> Pi/2;

In> ArcSin(1/3)

Out> ArcSin(1/3);

In> Sin(ArcSin(1/3))
out> 1/3;

In> x:=N(ArcSin(0.75))

28

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Out> 0.848062;
In> N(Sin(x))
Out> 0.7499999477;

See also:
Sin(),Cos (), Tan(),N(),Pi(),Ln(),ArcCos(),ArcTan()

ArcCos (x)
inverse trigonometric function arc-cosine

Param x argument to the function

This function represents the inverse trigonometric function arc-cosine. For instance, the value of $ArcCos(x)$ is
anumber y such that $Cos(y)$ equals x. Note that the number y is not unique. For instance, $Cos(Pi/2)$
and $Cos(3*Pi/2)$ both equal 0, so what should $ArcCos(0)$ be? In Yacas, it is agreed that the value of
$ArcCos(x)$ should be in the interval [0,Pi] . Usually, Yacas leaves this function alone unless it is forced to
do a numerical evaluation by the {N} function. If the argument is -1, 0, or 1 however, Yacas will simplify the
expression. If the argument is complex, the expression will be rewritten using the {Ln} function. This function
is threaded, meaning that if the argument {x} is a list, the function is applied to all entries in the list.

Example

In> ArcCos (0)

out> Pi/2

In> ArcCos (1/3)

Out> ArcCos (1/3)

In> Cos (ArcCos (1/3))
out> 1/3

In> x:=N(ArcCos (0.75))
Out> 0.7227342478

In> N(Cos (x))

Out> 0.75

See also:
Sin(),Cos (), Tan(),N(),Pi(),Ln(),ArcSin(),ArcTan()

ArcTan (x)
inverse trigonometric function arc-tangent

Param x argument to the function

This function represents the inverse trigonometric function arctangent. For instance, the value of $ArcTan(x)$ is
anumber y such that $Tan(y)$ equals x. Note that the number y is not unique. For instance, $Tan(0)$ and
$Tan(2*Pi)$ both equal 0, so what should $ArcTan(0)$ be? In Yacas, it is agreed that the value of $ArcTan(x)$
should be in the interval [-Pi/2,Pi/2]. Usually, Yacas leaves this function alone unless it is forced to do
a numerical evaluation by the {N} function. Yacas will try to simplify as much as possible while keeping the
result exact. If the argument is complex, the expression will be rewritten using the {Ln} function. This function
is threaded, meaning that if the argument {x} is a list, the function is applied to all entries in the list.

Example

In> ArcTan (1)

out> Pi/4

In> ArcTan (1/3)

Out> ArcTan(1/3)

In> Tan (ArcTan(1/3))

out> 1/3

In> x:=N(ArcTan(0.75))

Out> 0.643501108793285592213351264945231378078460693359375

3.2. Calculus and elementary functions 29

Yacas, Release 1.6.1

In> N(Tan(x))
Out> 0.75

See also:

Sin(),Cos (), Tan(),N(),Pi(),Ln(),ArcSin(),ArcCos ()

Exp (x)

exponential function
Param x argument to the function

This function calculates e” where e is the mathematic constant 2.71828... One can use Exp (1) to represent e.
This function is threaded function, meaning that if the argument x is a list, the function is applied to all entries
in the list.

Example

In> Exp(0)

Out> 1;

In> Exp (IxP1i)

Oout> -1;

In> N(Exp (1))

OQut> 2.7182818284;

See also:

Ln(),Sin(),Cos (), Tan(),N()

Ln (x)

natural logarithm
Param x argument to the function

This function calculates the natural logarithm of “x”. This is the inverse function of the exponential function,
{Exp},i.e. $Ln(x) = y$ implies that $Exp(y) = x$. For complex arguments, the imaginary part of the logarithm
is in the interval (-Pi,Pi]. This is compatible with the branch cut of {Arg}. This function is threaded,
meaning that if the argument {x} is a list, the function is applied to all entries in the list.

Example

In> Ln(1l)

Oout> 0;

In> Ln (Exp (x))
Oout> x;

In> D(x) Ln(x)
out> 1/x;

See also:

Exp(),Arg()

Sgrt (x)

square root
Param x argument to the function

This function calculates the square root of “x”. If the result is not rational, the call is returned unevaluated unless
a numerical approximation is forced with the {N} function. This function can also handle negative and complex
arguments. This function is threaded, meaning that if the argument {x} is a list, the function is applied to all
entries in the list.

Example

30

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> Sgrt (16)

Oout> 4;

In> Sgrt (15)

Out> Sqgrt (15);

In> N(Sqgrt (15))
Out> 3.8729833462;
In> Sqrt(4/9)

out> 2/3;

In> Sgrt(-1)

Out> Complex(0,1);

See also:

Exp (), " (),N()

Abs (x)
absolute value or modulus of complex number

Param x argument to the function

This function returns the absolute value (also called the modulus) of “x”. If “x” is positive, the absolute value
is “x” itself; if “x” is negative, the absolute value is “-x”. For complex “x”, the modulus is the “r” in the
polar decomposition 2 = re*®?. This function is connected to the {Sign} function by the identity Abs (x) =
Sign (x) = x forreal “x”. This function is threaded, meaning that if the argument {x} is a list, the function

is applied to all entries in the list.

Example

In> Abs (2);
out> 2;

In> Abs (-1/2);
out> 1/2;

In> Abs (3+4+1I);
Out> 5;

See also:
Sign(),Arg()

Sign (x)
sign of a number

Param x argument to the function

This function returns the sign of the real number x. It is “1” for positive numbers and “-1” for negative
numbers. Somewhat arbitrarily, {Sign(0)} is defined to be 1. This function is connected to the { Abs} function
by the identity $Abs(x) * Sign(x) = x$ for real x. This function is threaded, meaning that if the argument {x}
is a list, the function is applied to all entries in the list.

Example

In> Sign(2)

out> 1;

In> Sign(-3)

Out> -1;

In> Sign(0)

Out> 1;

In> Sign(-3) = Abs(-3)
Out> -3;

See also:

3.2. Calculus and elementary functions 31

Yacas, Release 1.6.1

Arg (), Abs ()

D (variable[, n=1]) expression
derivative

Param variable variable

Param expression expression to take derivatives of

Param n order

Returns n-th derivative of expression with respect to variable

D (variable) expression
derivative

Param variable variable

Param list a list of variables

Param expression expression to take derivatives of

Param n order of derivative

Returns derivative of expression with respect to variable

This function calculates the derivative of the expression {expr} with respect to the variable {var} and returns it.
If the third calling format is used, the {n}-th derivative is determined. Yacas knows how to differentiate standard
functions such as {L.n} and {Sin}. The {D} operator is threaded in both {var} and {expr}. This means that if
either of them is a list, the function is applied to each entry in the list. The results are collected in another list
which is returned. If both {var} and {expr} are a list, their lengths should be equal. In this case, the first entry
in the list {expr} is differentiated with respect to the first entry in the list {var}, the second entry in {expr} is
differentiated with respect to the second entry in {var}, and so on. The {D} operator returns the original function
if $n=08$, a common mathematical idiom that simplifies many formulae.

Example

In> D(x)Sin(xxy)

Out> y*Cos (x*y);

In> D({x,vy,2z})Sin(x*y)

Oout> {yx*Cos (x*y),x*xCos (x*y),0};
In> D(x,2)Sin(x*y)

Oout> -Sin (x*y)*y"2;

In> D(x) {Sin(x),Cos (x)}

Out> {Cos(x),-Sin(x) };

See also:
Integrate (), Taylor(),Diverge (), Curl ()

Curl (vector, basis)
curl of a vector field

Param vector vector field to take the curl of
Param basis list of variables forming the basis

This function takes the curl of the vector field “vector” with respect to the variables “basis”. The curl is defined
in the usual way, Curl(f,x) = { D(x[2]) f[3] - D(x[3]) f[2], D(x[3]) f[1] - D(x[1]) f[3], D(x[1]) f[2] - D(x[2]) f[1]
} Both “vector” and “basis” should be lists of length 3.

Diverge (vector, basis)
divergence of a vector field

Param vector vector field to calculate the divergence of

32 Chapter 3. Reference Manual

Yacas, Release 1.6.1

Param basis list of variables forming the basis

This function calculates the divergence of the vector field “vector” with respect to the variables “basis”. The
divergence is defined as Diverge(f,x) = D(x[1]) f[1] + ... + D(X[n]) f[n], where {n} is the length of the lists
“vector” and “basis”. These lists should have equal length.

Integrate (var) expr
Integrate (var, xI, x2) expr
integral

Param expr expression to integrate

Param var atom, variable to integrate over
Param x1 first point of definite integration
Param x2 second point of definite integration

This function integrates the expression expr with respect to the variable var. In the case of definite integral,
the integration is carried out from $var=x1$ to $var=x2$". Some simple integration rules have currently been
implemented. Polynomials, some quotients of polynomials, trigonometric functions and their inverses, hyper-
bolic functions and their inverses, {Exp}, and {Ln}, and products of these functions with polynomials can be
integrated.

Example

In> Integrate(x,a,b) Cos(x)
Out> Sin(b)-Sin(a);

In> Integrate(x) Cos(x)
Out> Sin(x);

See also:
D(),UniqueConstant ()

Limit (var, val) expr
limit of an expression

Param var variable

Param val number or Infinity
Param dir direction (Left or Right)
Param expr an expression

This command tries to determine the value that the expression “expr” converges to when the variable “var” ap-
proaches “val”. One may use {Infinity} or {-Infinity} for “val”. The result of { Limit} may be one of the symbols
{Undefined} (meaning that the limit does not exist), {Infinity}, or {-Infinity}. The second calling sequence is
used for unidirectional limits. If one gives “dir” the value {Left}, the limit is taken as “var” approaches “val”
from the positive infinity; and {Right} will take the limit from the negative infinity.

Example

In> Limit (x,0) Sin(x)/x

out> 1;

In> Limit (x,0) (Sin(x)-Tan(x))/(x"3)
out> -1/2;

In> Limit (x,0) 1/x

Out> Undefined;

In> Limit (x,0,Left) 1/x

Out> -Infinity;

In> Limit (x,0,Right) 1/x

3.2. Calculus and elementary functions 33

Yacas, Release 1.6.1

Out> Infinity;
Random numbers

Random ()
(pseudo-) random number generator

Param init integer, initial seed value
Param option atom, option name
Param value atom, option value
Param r alist, RNG object

These commands are an object-oriented interface to (pseudo-)random number generators (RNGs). {RngCreate}
returns a list which is a well-formed RNG object. Its value should be saved in a variable and used to call {Rng}
and {RngSeed}. {Rng(r)} returns a floating-point random number between 0 and 1 and updates the RNG object
{r}. (Currently, the Gaussian option makes a RNG return a <i>complex</i> random number instead of a real
random number.) {RngSeed(r,init)} re-initializes the RNG object {r} with the seed value {init}. The seed value
should be a positive integer. The {RngCreate} function accepts several options as arguments. Currently the
following options are available:

RandomIntegerMatrix (rows, cols, from, to)
generate a matrix of random integers

Param rows number of rows in matrix
Param cols number of cols in matrix
Param from lower bound

Param to upper bound

This function generates a {rows x cols} matrix of random integers. All entries lie between “from” and “to”,
including the boundaries, and are uniformly distributed in this interval.

Example

In> PrettyForm(RandomIntegerMatrix(5,5,-2710,2710))
T (=506) (749) (-574) (-674) (-106) T

: (301) (151) (-326) (=56) (-277) :

: (777) (=761) (-161) (—-918) (-417) :

: (=518) (127) (136) (797) (—406) :

: (679) (854) (=78) (503) (772 :

\ /

See also:

RandomIntegerVector (), RandomPoly ()

RandomIntegerVector (nr, from, to)
generate a vector of random integers

Param nr number of integers to generate
Param from lower bound

Param to upper bound

34 Chapter 3. Reference Manual

Yacas, Release 1.6.1

This function generates a list with “nr” random integers. All entries lie between “from” and “to”, including the
boundaries, and are uniformly distributed in this interval.

Example

In> RandomIntegerVector (4,-3,3)
Out> {0,3,2,-2};

See also:
Random (), RandomPoly ()

RandomPoly (var, deg, coefinin, coefmax)
construct a random polynomial

Param var free variable for resulting univariate polynomial
Param deg degree of resulting univariate polynomial
Param coefmin minimum value for coefficients

Param coefmax maximum value for coefficients

RandomPoly generates a random polynomial in variable “var”, of degree “deg”, with integer coefficients ranging
from “coefmin” to “coefmax” (inclusive). The coefficients are uniformly distributed in this interval, and are
independent of each other.

Example

In> RandomPoly(x,3,-10,10)
out> 3#x"3+10xx"2-4%x-6;
In> RandomPoly(x,3,-10,10)
out> —2+x"3-8+x"2+8;

See also:
Random (), RandomIntegerVector ()

Add (vall, val2, ...)
Add (list)
find sum of a list of values

Param vall val2 expressions
Param list list of expressions to add

This function adds all its arguments and returns their sum. It accepts any number of arguments. The arguments
can be also passed as a list.

Example

In> Add(1,4,9);
Out> 14;

In> Add(l1 .. 10);
OQut> 55;

Multiply (vall, val2,...)
Multiply (list)
product of a list of values

Param vall val2 expressions

Param list list of expressions to add

3.2. Calculus and elementary functions 35

Yacas, Release 1.6.1

Multiply all arguments and returns their product. It accepts any number of arguments. The arguments can be
also passed as a list.

Example
In> Multiply(2,3,4);
Out> 24
In> Multiply (1l .. 10)

Out> 3628800

Sum (var, from, to, body)
find sum of a sequence

Param var variable to iterate over

Param from integer value to iterate from

Param to integer value to iterate up to

Param body expression to evaluate for each iteration

The command finds the sum of the sequence generated by an iterative formula. The expression “body” is
evaluated while the variable “var” ranges over all integers from “from” up to “to”, and the sum of all the results
is returned. Obviously, “to” should be greater than or equal to “from”. Warning: {Sum} does not evaluate its
arguments {var} and {body} until the actual loop is run.

Example

In> Sum(i, 1, 3, i"2);
OQut> 14;

See also:
Factorize()

Factorize (list)
product of a list of values

Param list list of values to multiply

Param var variable to iterate over

Param from integer value to iterate from

Param to integer value to iterate up to

Param body expression to evaluate for each iteration

The first form of the {Factorize} command simply multiplies all the entries in “list” and returns their product. If
the second calling sequence is used, the expression “body” is evaluated while the variable “var” ranges over all
integers from “from” up to “to”, and the product of all the results is returned. Obviously, “to” should be greater
than or equal to “from”.

Example

In> Factorize({1,2,3,4});
out> 24;
In> Factorize(i, 1, 4, 1i);
OQut> 24;

See also:

Sum (), Apply ()

Taylor (var, at, order) expr
univariate Taylor series expansion

36 Chapter 3. Reference Manual

Yacas, Release 1.6.1

Param var variable

Param at point to get Taylor series around
Param order order of approximation

Param expr expression to get Taylor series for

This function returns the Taylor series expansion of the expression “expr” with respect to the variable “var”
around “at” up to order “order”. This is a polynomial which agrees with “expr” at the point “var = at”, and
furthermore the first “order” derivatives of the polynomial at this point agree with “expr”. Taylor expansions
around removable singularities are correctly handled by taking the limit as “var” approaches “at”.

Example

In> PrettyForm(Taylor(x,0,9) Sin(x))

3 5 7 9

X X X X

X — == 4 == = ———— o ——————
6 120 5040 362880

Out> True;

See also:
D(),InverseTaylor (), ReversePoly (), BigOh ()

InverseTaylor (var, at, order) expr
Taylor expansion of inverse

Param var variable

Param at point to get inverse Taylor series around
Param order order of approximation

Param expr expression to get inverse Taylor series for

This function builds the Taylor series expansion of the inverse of the expression “expr” with respect to the
variable “var” around “at” up to order “order”. It uses the function {ReversePoly} to perform the task.

Example

In> PrettyPrinter'Set ("PrettyForm")

True

In> expl := Taylor(x,0,7) Sin(x)

3 5 7

X X X

X - —— 4+ —— - ———=

6 120 5040

In> exp2 := InverseTaylor(x,0,7) ArcSin (x)
5 7 3

X X X

——— - - - —— 4+ X
120 5040 6
In> Simplify (expl-exp2)

See also:
ReversePoly (), Taylor (), BigOh ()

ReversePoly (f, g, var, newvar, degree)
solve $h(f(x)) = g(x) + O(x*n)$ for h

Param f function of var

3.2. Calculus and elementary functions 37

Yacas, Release 1.6.1

Param g function of var

Param var a variable

Param newvar a new variable to express the result in
Param degree the degree of the required solution

This function returns a polynomial in “newvar”, say “h(newvar)”, with the property that “h(f(var))” equals
“g(var)” up to order “degree”. The degree of the result will be at most “degree-1". The only requirement is that
the first derivative of “f” should not be zero. This function is used to determine the Taylor series expansion of
the inverse of a function “f”: if we take “g(var)=var”, then “h(f(var))=var” (up to order “degree”), so “h” will be
the inverse of “f”".

Example

In> f(x):=Eval (Expand((l+x)"4))

Out> True;

In> g(x) := x"2

Out> True;

In> h(y) :=Eval (ReversePoly (f(x),g(x),%X,y,8))

Oout> True;

In> BigOh(h(f(x)),x,8)

out> x"2;

In> h(x)

out> (-2695* (x-1)"7)/131072+(791* (x-1)"6) /32768 +(-119*(x-1)"5)/4096+ (37*(x-1)"4) /1]

See also:

InverseTaylor (), Taylor (), BigOh ()

BigOh (poly, var, degree)

drop all terms of a certain order in a polynomial
Param poly a univariate polynomial
Param var a free variable
Param degree positive integer
This function drops all terms of order “degree” or higher in “poly”, which is a polynomial in the variable “var”.

Example

In> BigOh (1+x+x"2+x"3,x,2)

Out> x+1;

See also:

Taylor (), InverseTaylor ()

LagrangelInterpolant (xlist, ylist, var)

polynomial interpolation
Param xlist list of argument values
Param ylist list of function values
Param var free variable for resulting polynomial

This function returns a polynomial in the variable “var” which interpolates the points “(xlist, ylist)”. Specifically,
the value of the resulting polynomial at “xlist[1]” is “ylist[1]”, the value at “xlist[2]” is “ylist[2]”, etc. The degree
of the polynomial is not greater than the length of “xlist”. The lists “xlist” and “ylist” should be of equal length.
Furthermore, the entries of “xlist” should be all distinct to ensure that there is one and only one solution. This
routine uses the Lagrange interpolant formula to build up the polynomial.

38

Chapter 3. Reference Manual

024+ (-3* (x-1)

Yacas, Release 1.6.1

Example

In> f := LagrangeInterpolant ({0,1,2}, \
{0,1,1}, x);

out> (x*(x-1))/2-x*(x-2);

In> Eval (Subst (x,0) f);

Oout> 0;

In> Eval (Subst (x,1) f);

Out> 1;

In> Eval (Subst (x,2) f);

Oout> 1;

In> PrettyPrinter'Set ("PrettyForm");

True

In> Lagrangelnterpolant ({x1,x2,x3}, {yl,v2,v3}, Xx)
vl « ((x — x2) * (x — x3)

v2 x ((x — x1) x (x — x3)

b
((x2 = x1) * (x2 - x3)

y3 x ((x — x1) % (x — x2)

b

See also:

Subst ()

factorial
Param m integer
Param n integer, half-integer, or list
Param a}, {b numbers

The factorial function {n!} calculates the factorial of integer or half-integer numbers. For nonnegative integers,
$n! = n*(n-1)*(n-2)*...*1$. The factorial of half-integers is defined via Euler’s Gamma function, $z! :=
Gamma(z+1)$. If $n=0% the function returns 1. The “double factorial” function {n!!} calculates $n*(n-2)*(n-
4)*..$. This product terminates either with 1 or with 2 depending on whether n is odd or even. If
$n=0$ the function returns 1. The “partial factorial” function {a * b} calculates the product $a*(a+1)*...$
which is terminated at the least integer not greater than b. The arguments a and b do not have
to be integers; for integer arguments, {a * b} = $b! / (a-1)!$. This function is sometimes a lot faster than
evaluating the two factorials, especially if a and b are close together. If $a>b$ the function returns 18.
The {Subfactorial} function can be interpreted as the number of permutations of {m} objects in which no object
appears in its natural place, also called “derangements.” The factorial functions are threaded, meaning that if the
argument {n} is a list, the function will be applied to each element of the list. Note: For reasons of Yacas syntax,
the factorial sign {!} cannot precede other non-letter symbols such as {+} or {*}. Therefore, you should enter a
space after {!} in expressions such as {x! +1}. The factorial functions terminate and print an error message if the
arguments are too large (currently the limit is $n < 65535%) because exact factorials of such large numbers are
computationally expensive and most probably not useful. One can call {Internal’ LnGammaNum()} to evaluate
logarithms of such factorials to desired precision.

Example

In> 5!

Oout> 120;

In> 1 = 2 » 3 %« 4 % 5
Out> 120;

3.2. Calculus and elementary functions 39

Yacas, Release 1.6.1

In> (1/2)!

out> sqrt (Pi)/2;

In> 7!!;

Out> 105;

In> 1/3 xx* 10;

Out> 17041024000/59049;
In> Subfactorial (10)
Out> 1334961;

n!!

See also:

Bin(),Factorize (), Gamma (), ' (), »+* (), Subfactorial ()

double factorial

X *%k%x Yy

whatever

Bin (n, m)

binomial coefficients
Param n}, {m integers

This function calculates the binomial coefficient “n” above “m”, which equals $$n! / (m! * (n-m)!)$$ This is
equal to the number of ways to choose “m” objects out of a total of “n” objects if order is not taken into account.

€ 99,

The binomial coefficient is defined to be zero if “m” is negative or greater than “n”; {Bin(0,0)}=1.

Example

In> Bin (10, 4)

Out> 210;

In> 10! / (4! % 6!)
OQut> 210;

See also:

(), Eulerian()

Eulerian (n, m)

Eulerian numbers
Param n}, {m integers

The Eulerian numbers can be viewed as a generalization of the binomial coefficients, and are given explicitly by
$$ Sum(j,0,k+1,(-1)?Aj*Bin(n+1,j)*(k-j+1)"n) $$.

Example

In> Eulerian(6,2)
Out> 302;

In> Eulerian(10,9)
Oout> 1;

See also:

Bin ()

KroneckerDelta (i,)
KroneckerDelta ({i,j,...})

Kronecker delta

Calculates the Kronecker delta, which gives 1 if all arguments are equal and 0 otherwise.

40

Chapter 3. Reference Manual

https://en.wikipedia.org/wiki/Kronecker_delta

Yacas, Release 1.6.1

LeviCivita (list)
totally anti-symmetric Levi-Civita symbol

Param list a list of integers 1, ..., n in some order

LeviCivita () implements the Levi-Civita symbol. list should be a list of integers, and this function returns
1 if the integers are in successive order, eg. LeviCivita({1,2,3,...}) would return 1. Swapping two elements of
this list would return -1. So, LeviCivita({2,1,3}) would evaluate to -1.

Example

In> LeviCivita ({1,2,3})
Oout> 1;

In> LeviCivita ({2,1,3})
Out> -1;

In> LeviCivita ({2,2,3})
Out> 0;

See also:
Permutations ()

Permutations (list)
get all permutations of a list

Param list a list of elements
Permutations returns a list with all the permutations of the original list.

Example

In> Permutations({a,b,c})
Out> {{a,b,c},{a,c,b}t,{c,a,b},{b,a,c},
{b,c,al, {c,b,al};

See also:
LeviCivita /()

Gamma (x)
Euler’s Gamma function

Param x expression
Param number expression that can be evaluated to a number

{Gamma(x)} is an interface to Euler’s Gamma function $Gamma(x)$. It returns exact values on integer and
half-integer arguments. {N(Gamma(x)} takes a numeric parameter and always returns a floating-point number
in the current precision. Note that Euler’s constant $gamma<=>0.57722% is the lowercase {gamma} in Yacas.

Example

In> Gamma (1.3)

Out> Gamma (1.3);

In> N(Gamma (1.3),30)

Out> 0.897470696306277188493754954771;
In> Gamma (1.5)

Out> Sqgrt (Pi)/2;

In> N(Gamma (1.5),30);

Out> 0.88622692545275801364908374167;

See also:

(),N(), gamma ()

3.2. Calculus and elementary functions 41

Yacas, Release 1.6.1

Zeta (x)

Riemann’s Zeta function

Param x expression

Param number expression that can be evaluated to a number

{Zeta(x)} is an interface to Riemann’s Zeta function $zeta(s)$. It returns exact values on integer and half-integer
arguments. {N(Zeta(x)} takes a numeric parameter and always returns a floating-point number in the current

precision.

Example

In> Precision (30)

Out> True;

In> Zeta(l)

Out> Infinity;

In> Zeta(l.3)

Out> Zeta(1.3);

In> N(Zeta(1.3))

Out> 3.93194921180954422697490751058798;
In> Zeta(2)

out> Pi"2/6;

In> N(Zeta(2));

Out> 1.64493406684822643647241516664602;

See also:

(), N ()

Bernoulli (index)

Bernoulli numbers and polynomials

Param x expression that will be the variable in the polynomial

Param index expression that can be evaluated to an integer

{Bernoulli(n)} evaluates the n-th Bernoulli number. {Bernoulli(n, x)} returns the n-th Bernoulli polynomial

in the variable x. The polynomial is returned in the Horner form.

Euler (index)

Euler numbers and polynomials

Param x expression that will be the variable in the polynomial

Param index expression that can be evaluated to an integer

{Euler(n)} evaluates the n-th Euler number. {Euler(n,x)} returns the n-th Euler polynomial in the variable

x.

Example

In> Euler (6)
Oout> -61;
In> A:=Euler (5, x)

out> (x-1/2)"5+ (=10 (x-1/2)"3)/4+(25%(x-1/2))/16;

In> Simplify (A)
out> (2*x"5-5xx"4+5%x"2-1)/2;

See also:

Bin ()

LambertW (x)

Lambert’s W function

42

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Param x expression, argument of the function
Lambert’s W function is (a multiple-valued, complex function) defined for any (complex) z by
W(z)eW®) = 2

The W function is sometimes useful to represent solutions of transcendental equations. For example, the equa-
tion $Ln(x)=3*x$ can be “solved” by writing $x=-3*W(-1/3)$. It is also possible to take a derivative or integrate
this function “explicitly”. For real arguments x, $W(x)$ is real if $x>= -Exp(-1)$. To compute the numeric
value of the principal branch of Lambert’s W function for real arguments $x>= -Exp(-1)$ to current precision,
one can call {N(LambertW(x))} (where the function {N} tries to approximate its argument with a real value).

Example

In> LambertW(0)

Out> 0;

In> N (LambertW(-0.24/Sqgrt (3«P1i)))
Out> -0.0851224014;

See also:

Exp ()

3.3 Simplification of expressions

Simplification of expression is a big and non-trivial subject. Simplification implies that there is a preferred form. In
practice the preferred form depends on the calculation at hand. This chapter describes the functions offered that allow
simplification of expressions.

Simplify (expr)
try to simplify an expression

Param expr expression to simplify

This function tries to simplify the expression {expr} as much as possible. It does this by grouping powers within
terms, and then grouping similar terms.

Example

In> a*b*a”2/b-a”"3

out> (b*a”3)/b-a”3;

In> Simplify (axbxa”2/b-a”3)
Out> 0;

See also:
TrigSimpCombine (), RadSimp ()

RadSimp (expr)
simplify expression with nested radicals

Param expr an expression containing nested radicals

This function tries to write the expression “expr’” as a sum of roots of integers: $Sqrt(el) + Sqrt(e2) + ...$, where
el, $e2$ and so on are natural numbers. The expression “expr” may not contain free variables. It does this
by trying all possible combinations for $e1$, $e2$, ... Every possibility is numerically evaluated using {N} and
compared with the numerical evaluation of “expr”. If the approximations are equal (up to a certain margin), this
possibility is returned. Otherwise, the expression is returned unevaluated. Note that due to the use of numerical
approximations, there is a small chance that the expression returned by {RadSimp} is close but not equal to
{expr}. The last example underneath illustrates this problem. Furthermore, if the numerical value of {expr} is
large, the number of possibilities becomes exorbitantly big so the evaluation may take very long.

3.3. Simplification of expressions 43

Yacas, Release 1.6.1

Example

In> RadSimp (Sqrt (9+4xSqgrt (2)))
Out> Sqgrt (8)+1;

In> RadSimp (Sgrt (5+2%Sqrt (6)) \
+Sgrt (5-2*Sqrt (6)))

Out> Sqgrt (12);

In> RadSimp (Sgrt (14+3xSqgrt (3+2
*Sqrt (5-12%Sgrt (3-2%Sqgrt (2))))))
Oout> Sqgrt (2)+3;

But this command may yield incorrect results:
In> RadSimp (Sgrt (1+107(-6)))
Out> 1;

See also:

Simplify (), N()

FactorialSimplify (expression)

Simplify hypergeometric expressions containing factorials
Param expression expression to simplify

{FactorialSimplify} takes an expression that may contain factorials, and tries to simplify it. An expression like
$ (n+1)! / n! $ would simplify to $(n+1)$. The following steps are taken to simplify:

LnExpand (expr)

expand a logarithmic expression using standard logarithm rules
Param expr the logarithm of an expression

{LnExpand} takes an expression of the form $Ln(expr)$, and applies logarithm rules to expand this into multiple
{Ln} expressions where possible. An expression like $Ln(a*b”n)$ would be expanded to $Ln(a)+n*Ln(b)$. If
the logarithm of an integer is discovered, it is factorised using {Factors} and expanded as though {LnExpand}
had been given the factorised form. So $Ln(18)$ goes to $Ln(x)+2*Ln(3)$.

LnCombine (expr)

combine logarithmic expressions using standard logarithm rules
Param expr an expression possibly containing multiple {Ln} terms to be combined

{LnCombine} finds {Ln} terms in the expression it is given, and combines them using logarithm rules. It is
intended to be the exact converse of {LnExpand}.

TrigSimpCombine (expr)

combine products of trigonometric functions
Param expr expression to simplify

This function applies the product rules of trigonometry, e.g. $Cos(u)*Sin(v) = (1/2)*(Sin(v-u) + Sin(v+u))$.
As a result, all products of the trigonometric functions {Cos} and {Sin} disappear. The function also tries to
simplify the resulting expression as much as possible by combining all similar terms. This function is used in for
instance {Integrate}, to bring down the expression into a simpler form that hopefully can be integrated easily.

Example

In> PrettyPrinter'Set ("PrettyForm");

True

In> TrigSimpCombine (Cos (a)~2+Sin(a)"2)
1

In> TrigSimpCombine (Cos (a)"2-Sin(a)"2)
Cos(-2 = a)

Out>

44

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> TrigSimpCombine (Cos (a)"2+Sin (b))
Sin(b) Sin(-2 * a + b)

See also:

Simplify (), Integrate (), Expand(),Sin(),Cos (), Tan ()

3.4 Solvers

By solving one tries to find a mathematical object that meets certain criteria. This chapter documents the functions
that are available to help find solutions to specific types of problems.

3.4.1 Symbolic Solvers

Solve (eq, var)
solve an equation

Param eq equation to solve
Param var variable to solve for

This command tries to solve an equation. If {eq} does not contain the {==} operator, it is assumed that the user
wants to solve $eq == 0$. The result is a list of equations of the form {var == value}, each representing a solution
of the given equation. The {Where} operator can be used to substitute this solution in another expression. If
the given equation {eq} does not have any solutions, or if {Solve} is unable to find any, then an empty list is
returned. The current implementation is far from perfect. In particular, the user should keep the following points
in mind:

OldSolve (eq, var)
old version of {Solve}

Param eq single identity equation
Param var single variable

Param eqlist list of identity equations
Param varlist list of variables

This is an older version of {Solve}. It is retained for two reasons. The first one is philosophical: it is good
to have multiple algorithms available. The second reason is more practical: the newer version cannot handle
systems of equations, but {OldSolve} can. This command tries to solve one or more equations. Use the first
form to solve a single equation and the second one for systems of equations. The first calling sequence solves
the equation “eq” for the variable “var”. Use the {==} operator to form the equation. The value of “var” which
satisfies the equation, is returned. Note that only one solution is found and returned. To solve a system of
equations, the second form should be used. It solves the system of equations contained in the list “eqlist” for the
variables appearing in the list “varlist”. A list of results is returned, and each result is a list containing the values
of the variables in “varlist”. Again, at most a single solution is returned. The task of solving a single equation
is simply delegated to {SuchThat}. Multiple equations are solved recursively: firstly, an equation is sought in
which one of the variables occurs exactly once; then this equation is solved with {SuchThat}; and finally the
solution is substituted in the other equations by {Eliminate} decreasing the number of equations by one. This
suffices for all linear equations and a large group of simple nonlinear equations.

3.4. Solvers 45

Yacas, Release 1.6.1

Example

In> OldSolve (atx*y==z, X)

out> (z-a)/y;

In> OldSolve ({axx+y==0,x+z==0}, {x,v})

out> {{-z,z=*a}l};

This means that "x = (z-a)/y" is a solution of the first equation
and that "x = -z", "y = zxa" is a solution of the systems of
equations in the second command.

An example which {0ldSolve} cannot solve:

In> OldSolve ({x"2-x == y"2-y,x"2-x == y"3+v},{x,vy});

out> {};

See also:

Solve (), SuchThat (), Eliminate (), PSolve (), ==()

SuchThat (expr, var)

special purpose solver
Param expr expression to make zero
Param var variable (or subexpression) to solve for

This functions tries to find a value of the variable “var” which makes the expression “expr” zero. It is also
possible to pass a subexpression as “var”, in which case {SuchThat} will try to solve for that subexpression.
Basically, only expressions in which “var” occurs only once are handled; in fact, {SuchThat} may even give
wrong results if the variables occurs more than once. This is a consequence of the implementation, which
repeatedly applies the inverse of the top function until the variable “var” is reached.

Example

In> SuchThat (atb*x, Xx)

out> (-a)/b;

In> SuchThat (Cos (a)+Cos (b) "2, Cos (b))
Out> Cos(a)”(1/2);

In> A:=Expand(a*xtb*xtc, x)

OQut> (a+b) xx+c;

In> SuchThat (A, x)

out> (-c)/ (atb);

See also:

Solve (), 0ldSolve (), Subst (), Simplify ()

Eliminate (var, value, expr)

substitute and simplify
Param var variable (or subexpression) to substitute
Param value new value of “var”
Param expr expression in which the substitution should take place

This function uses {Subst} to replace all instances of the variable (or subexpression) “var” in the expression
“expr” with “value”, calls {Simplify} to simplify the resulting expression, and returns the result.

Example

In> Subst (Cos(b), c¢) (Sin(a)+Cos(b)"2/c)
Out> Sin(a)+c”2/c;

In> Eliminate (Cos(b), c, Sin(a)+Cos (b)"2/c)
Out> Sin(a) tc;

46

Chapter 3. Reference Manual

Yacas, Release 1.6.1

See also:
SuchThat (), Subst (), Simplify ()

PSolve (poly, var)
solve a polynomial equation

Param poly a polynomial in “var”

Param var a variable

This commands returns a list containing the roots of “poly”, considered as a polynomial in the variable “var”.
If there is only one root, it is not returned as a one-entry list but just by itself. A double root occurs twice in the

result, and similarly for roots of higher multiplicity. All polynomials of degree up to 4 are handled.

Example

In> PSolve (b*xta, x)

Out> -a/b;

In> PSolve (c*x"2+b*x+a, x)

out> {(sgrt (b”2-4*c*a)-b)/ (2xc), (- (b+
Sqrt (b"2-4%cxa)))/(2*c)};

See also:
Solve (), Factor ()

MatrixSolve (A, b)
solve a system of equations

Param A coefficient matrix

Param b row vector

{MatrixSolve} solves the matrix equations { A*x = b} using Gaussian Elimination with Backward substitution.

If your matrix is triangular or diagonal, it will be recognized as such and a faster algorithm will be used.

Example

In> A:={{2,4,-2,-2},{1,2,4,-3},{-3,-3,8,-2},{-1,1,6,-3}};
out> {{2,4,-2,-2},{1,2,4,-3},{-3,-3,8,-2},{-1,1,6,-3}};
In> b:={-4,5,7,7};

Oout> {-4,5,7,7};

In> MatrixSolve (A,Db);

Oout> {1,2,3,4};

Numeric solvers

3.4.2 Numeric Solvers
Newton (expr, var, initial, accuracy)
solve an equation numerically with Newton’s method
Param expr an expression to find a zero for
Param var free variable to adjust to find a zero
Param initial initial value for “var” to use in the search
Param accuracy minimum required accuracy of the result
Param min minimum value for “var” to use in the search

Param max maximum value for “var” to use in the search

3.4. Solvers

47

Yacas, Release 1.6.1

This function tries to numerically find a zero of the expression {expr}, which should depend only on the variable
{var}. It uses the value {initial} as an initial guess. The function will iterate using Newton’s method until it
estimates that it has come within a distance {accuracy} of the correct solution, and then it will return its best
guess. In particular, it may loop forever if the algorithm does not converge. When {min} and {max} are
supplied, the Newton iteration takes them into account by returning {Fail} if it failed to find a root in the given
range. Note this doesn’t mean there isn’t a root, just that this algorithm failed to find it due to the trial values
going outside of the bounds.

Example

In> Newton (Sin(x),x,3,0.0001)
Out> 3.1415926535;

In> Newton (x"2-1,x,2,0.0001,-5,5)
Oout> 1;

In> Newton (x"2+1,x%x,2,0.0001,-5,5)
Qut> Fail;

See also:
Solve (), NewtonNum /()

FindRealRoots (p)
find the real roots of a polynomial

Param p a polynomial in {x}

Return a list with the real roots of $ p $. It tries to find the real-valued roots, and thus requires numeric floating
point calculations. The precision of the result can be improved by increasing the calculation precision.

Example

In> p:=Expand((x+3.1)" 5% (x-6.23))

Oout> x"6+9.27xx"5-0.465%x"4-300.793xx"3~
1394.2188%x"2-2590.476405%x-1783.5961073;
In> FindRealRoots (p)

Out> {-3.1,6.23};

See also:
SquareFree (), NumRealRoots (), MinimumBound (),MaximumBound (), Factor ()

NumRealRoots (p)
return the number of real roots of a polynomial

Param p a polynomial in {x}

Returns the number of real roots of a polynomial $ p $. The polynomial must use the variable {x} and no other
variables.

Example

In> NumRealRoots (x"2-1)
out> 2;
In> NumRealRoots (x"2+1)
Out> 0;

See also:
FindRealRoots (), SquareFree (), MinimumBound (), MaximumBound (), Factor ()

MinimumBound (p)
return lower bounds on the absolute values of real roots of a polynomial

Param p a polynomial in x

48 Chapter 3. Reference Manual

Yacas, Release 1.6.1

Return minimum and maximum bounds for the absolute values of the real roots of a polynomial {p}. The
polynomial has to be converted to one with rational coefficients first, and be made square-free. The polynomial
must use the variable {x}.

Example

In> p:=SquareFree (Rationalize ((x-3.1)* (x+6.23)))
Oout> (-40000*x"2-125200+x+772520)/870489;

In> MinimumBound (p)

Out> 5000000000/2275491039;

In> N (%)

Out> 2.1973279236;

In> MaximumBound (p)

Out> 10986639613/1250000000;

In> N(%)

Out> 8.7893116904;

See also:

SquareFree (), NumRealRoots (), FindRealRoots (), Factor ()

3.5 Differential Equations

In this chapter, some facilities for solving differential equations are described. Currently only simple equations without
auxiliary conditions are supported.

OdeSolve (exprl==expr2)
general ODE solver

Param exprl,expr2 expressions containing a function to solve for

This function currently can solve second order homogeneous linear real constant coefficient equations. The
solution is returned with unique constants generated by {UniqueConstant}. The roots of the auxiliary equation
are used as the arguments of exponentials. If the roots are complex conjugate pairs, then the solution returned is
in the form of exponentials, sines and cosines. First and second derivatives are entered as {y’,y’ ‘}. Higher order
derivatives may be entered as {y(n)}, where {n} is any integer.

Example
In> OdeSolve(y'' + y ==)
Qut> C42+%Sin(x)+C43%Cos (x);
In> OdeSolve(2xy'' + 3xy' + 5xy == 0)
out> Exp (((=3)*x)/4)* (C78xSin (Sqrt (31/16) xx) +C79xCos (Sqrt (31/16) xx)) ;
In> OdeSolve(y'' - 4dxy ==)

Out> Cl32+Exp ((—2) *x) +C1l36*Exp (2*x) ;
In> OdeSolve(y'' +2xy' + y == 0)
Out> (C1l83+C1l84xx) *Exp (—x);

See also:
Solve (),RootsWithMultiples ()

OdeTest (egn, testsol)
test the solution of an ODE

Param eqn equation to test

Param testsol test solution

3.5. Differential Equations 49

Yacas, Release 1.6.1

This function automates the verification of the solution of an ODE. It can also be used to quickly see how a
particular equation operates on a function.

Example

In> OdeTest (y''+y,Sin (x)+Cos (x))
Out> 0;

In> OdeTest (y''+2*y,Sin(x)+Cos (x))
Out> Sin(x)+Cos (x);

See also:

OdeSolve ()

OdeOrder (egn)

return order of an ODE
Param eqn equation

This function returns the order of the differential equation, which is order of the highest derivative. If no
derivatives appear, zero is returned.

Example

In> OdeOrder (y'' + 2xy' == 0)

out> 2;

In> OdeOrder (Sin(x)xy (5) + 2xy' == 0)
Out> 5;

In> OdeOrder (2xy + Sin(y) == 0)

Oout> 0;

See also:

OdeSolve ()

3.6 Propositional logic theorem prover

CanProve (proposition)

try to prove statement
Param proposition an expression with logical operations

Yacas has a small built-in propositional logic theorem prover. It can be invoked with a call to {CanProve}. An
example of a proposition is: “if a implies b and b implies c then a implies ¢”. Yacas supports the following
logical operations: {Not} : negation, read as “not” {And} : conjunction, read as “and” {Or} : disjunction, read
as “or” {=>} : implication, read as “implies” The abovementioned proposition would be represented by the
following expression, ((a=>b) And (b=>c)) => (a=>c) Yacas can prove that is correct by applying { CanProve}
to it: In> CanProve(((a=>b) And (b=>c)) => (a=>c)) Out> True; It does this in the following way: in order
to prove a proposition p, it suffices to prove that $Not p$ is false. It continues to simplify $Not p$ using the
rules: Not (Not x) —> x (eliminate double negation), x=>y —> Not x Or y (eliminate implication), Not (x And
y) —> Not x Or Not y (De Morgan’s law), Not (x Or y) —> Not x And Not y (De Morgan’s law), (x And y) Or z
—> (x Or z) And (y Or z) (distribution), x Or (y And z) —> (x Or y) And (x Or z) (distribution), and the obvious
other rules, such as, True Or x — True etc. The above rules will translate a proposition into a form (p1 Or p2
Or ...) And (q1 Or q2 Or ...) And ... If any of the clauses is false, the entire expression will be false. In the next
step, clauses are scanned for situations of the form: (p Or Y) And (Not p Or Z) —> (Y Or Z) If this combination
{(Y Or Z)} is empty, it is false, and thus the entire proposition is false. As a last step, the algorithm negates the
result again. This has the added advantage of simplifying the expression further.

Example

50

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> CanProve(a Or Not a)

Out> True;

In> CanProve (True Or a)

Out> True;

In> CanProve (False Or a)

Out> a;

In> CanProve(a And Not a)

Out> False;

In> CanProve(a Or b Or (a And b))
Out> a Or b;

See also:

True (), False(),And(),Or (), Not ()

3.7 Linear Algebra

This chapter describes the commands for doing linear algebra. They can be used to manipulate vectors, represented as

lists, and matrices, represented as lists of lists.

Dot (t1, 12)
get dot product of tensors

Param t1,t2 tensor lists (currently only vectors and matrices are supported)

{Dot} returns the dot (aka inner) product of two tensors tl and t2. The last index of t1 and the first index of
t2 are contracted. Currently {Dot} works only for vectors and matrices. {Dot}-multiplication of two vectors, a
matrix with a vector (and vice versa) or two matrices yields either a scalar, a vector or a matrix.

Example

In> Dot ({1,2},{3,4})

out> 11;

In> Dot ({{1,2},{3,4}},{5,6})

OQut> {17,39};

In> Dot ({5,6},{{1,2},{3,4}})

Out> {23,34};

In> Dot ({{1,2},{3,4}},{{5,6},{7,8}})
out> {{19,22},{43,50}};

Or, using the "."-Operator:
In> {1,2} . {3,4}
out> 11;

In> {{1,2},{3,4}} . {5,6}

OQut> {17,39};

In> {5,6} . {{1,2},{3,4}}

out> {23,34};

In> {{1,2},{3,4}} . {{5,6},{7,8}}
out> {{19,22},{43,50}};

See also:

Outer(),Cross (), IsScalar (), IsVector (), IsMatrix ()

InProduct (a, b)
inner product of vectors (deprecated)

Param a}, {b vectors of equal length

3.7. Linear Algebra

51

Yacas, Release 1.6.1

The inner product of the two vectors “a” and “b” is returned. The vectors need to have the same size. This
function is superceded by the {.} operator.

Example

In> {a,b,c} . {d,e, f};
Oout> axd+bre+c*f;

See also:

Dot (), CrossProduct ()

CrossProduct (a, b)

outer product of vectors
Param a}, {b three-dimensional vectors

The cross product of the vectors “a” and “b” is returned. The result is perpendicular to both “a” and “b” and its
length is the product of the lengths of the vectors. Both “a” and “b” have to be three-dimensional.

Example

In> {a,b,c} X {d,e, f};
Out> {b*xf-cxe,cxd-axf,axe-b*d};

See also:

InProduct ()

Outer (t1, 12)

get outer tensor product
Param t1,t2 tensor lists (currently only vectors are supported)

{Outer} returns the outer product of two tensors t1 and t2. Currently {Outer} work works only for vectors, i.e.
tensors of rank 1. The outer product of two vectors yields a matrix.

Example

In> Outer({1,2},{3,4,5})
Out> {{3,4,5},{6,8,10}};
In> Outer({a,b}, {c,d})

Oout> {{axc,axd}, {bxc,b*xd}};
Or, using the "o"-Operator:
In> {1,2} o {3,4,5}

Out> {{3,4,5},{6,8,10}};
In> {a,b} o {c,d}

Oout> {{axc,axd}, {bxc,b*xd}};

See also:

Dot (),Cross ()

ZeroVector (n)

create a vector with all zeroes
Param n length of the vector to return
This command returns a vector of length “n”, filled with zeroes.

Example

In> ZeroVector (4)
Out> {0,0,0,0};

52

Chapter 3. Reference Manual

Yacas, Release 1.6.1

See also:
BaseVector (), ZeroMatrix (), IsZeroVector ()

BaseVector (k, n)
base vector

Param k index of the base vector to construct
Param n dimension of the vector

This command returns the “k”-th base vector of dimension “n”. This is a vector of length “n” with all zeroes
except for the “k”-th entry, which contains a 1.

Example

In> BaseVector (2,4)
Out> {0,1,0,0};

See also:
ZeroVector (), Identity ()

Identity (n)
make identity matrix
Param n size of the matrix

@9

This commands returns the identity matrix of size “n” by “n”. This matrix has ones on the diagonal while the
other entries are zero.

Example

In> Identity(3)
Out> {{1,0,0},{0,1,0},{0,0,1}};

See also:
BaseVector (), ZeroMatrix (),DiagonalMatrix()

ZeroMatrix (n)
make a zero matrix

Param n number of rows
Param m number of columns

This command returns a matrix with n rows and m columns, completely filled with zeroes. If only given one
parameter, it returns the square n by n zero matrix.

Example

In> ZeroMatrix (3,4)

Out> {{0,0,0,0},{0,0,0,0},{0,0,0,0}};
In> ZeroMatrix (3)

Out> {{0,0,0},{0,0,0},{0,0,0}};

See also:
ZeroVector (), Identity ()

Diagonal (A)
extract the diagonal from a matrix

Param A matrix

This command returns a vector of the diagonal components of the matrix {A}.

3.7. Linear Algebra 53

Yacas, Release 1.6.1

Example

In> Diagonal (5+«Identity (4))
Out> {5,5,5,5};

In> Diagonal (HilbertMatrix (3))
Out> {1,1/3,1/5};

See also:

DiagonalMatrix (), IsDiagonal ()

DiagonalMatrix (d)

construct a diagonal matrix
Param d list of values to put on the diagonal

This command constructs a diagonal matrix, that is a square matrix whose off-diagonal entries are all zero. The
elements of the vector “d” are put on the diagonal.

Example

In> DiagonalMatrix(l .. 4)
Out> {{1,0,0,0},{0,2,0,0},{0,0,3,0},{0,0,0,4}};

See also:

Identity (), ZeroMatrix ()

OrthogonalBasis (W)

create an orthogonal basis
Param W A linearly independent set of row vectors (aka a matrix)

Given a linearly independent set {W} (constructed of rows vectors), this command returns an orthogonal basis
{V} for {W}, which means that span(V) = span(W) and {InProduct(V[i],V[j]) =0} when {i !=j}. This function
uses the Gram-Schmidt orthogonalization process.

Example

In> OrthogonalBasis ({{1,1,0},{2,0,1},{2,2,1}})
Out> {{1,1,0},{1,-1,1},{-1/3,1/3,2/3}};

See also:

OrthonormalBasis (), InProduct ()

OrthonormalBasis (W)

create an orthonormal basis
Param W A linearly independent set of row vectors (aka a matrix)

Given a linearly independent set {W} (constructed of rows vectors), this command returns an orthonormal basis
{V} for {W}. This is done by first using { OrthogonalBasis(W)}, then dividing each vector by its magnitude, so
as the give them unit length.

Example

In> OrthonormalBasis ({{1,1,0},{2,0,1},{2,2,1}})
Out> {{Sqgrt(1/2),S8qrt(1/2),0},{Sqrt(1/3),-Sqrt(1/3),Sqrt(1/3)},
{-Sqrt(1/6),Sqrt(1/6),Sqrt (2/3)}};

See also:

OrthogonalBasis (), InProduct (), Normalize ()

54

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Normalize (v)
normalize a vector

Param v a vector
Return the normalized (unit) vector parallel to {v}: a vector having the same direction but with length 1.

Example

In> v:=Normalize ({3,4})
Out> {3/5,4/5};

In> v . v

Out> 1;

See also:
InProduct (), CrossProduct ()

Transpose (M)
get transpose of a matrix

Param M a matrix

{Transpose} returns the transpose of a matrix M. Because matrices are just lists of lists, this is a useful

operation too for lists.

Example

In> Transpose ({{a,b}})
Out> {{a}, {b}};

Determinant (M)
determinant of a matrix

Param M a matrix
Returns the determinant of a matrix M.

Example

In> A:=DiagonalMatrix(l .. 4)

Oout> {{1,0,0,0},{0,2,0,0},{0,0,3,0},{0,0,0,41}};
In> Determinant (A)

out> 24;

Trace (M)
trace of a matrix

Param M a matrix

{Trace} returns the trace of a matrix M (defined as the sum of the elements on the diagonal of the matrix).

Example

In> A:=DiagonalMatrix (1l .. 4)

Out> {{1,0,0,0},{0,2,0,0},{0,0,3,0},{0,0,0,4}};
In> Trace (A)

Out> 10;

Inverse (M)
get inverse of a matrix

Param M a matrix

3.7. Linear Algebra

55

Yacas, Release 1.6.1

Inverse returns the inverse of matrix M. The determinant of M should be non-zero. Because this function
uses { Determinant} for calculating the inverse of a matrix, you can supply matrices with non-numeric (symbolic)
matrix elements.

Example

In> A:=DiagonalMatrix({a,b,c})

out> {{a,0,0},{0,b,0},{0,0,c}};

In> B:=Inverse (A)

out> {{(bxc)/ (a*xbxc),0,0}, {0, (axc)/ (axbxc),0},
{0,0, (axb) / (axbxc) } };

In> Simplify (B)

Out> {{1/a,0,0},{0,1/b,0},{0,0,1/c}};

See also:

Determinant ()

Minor (M, i, j)

get principal minor of a matrix
Param M a matrix
Param i}, {j positive integers

Minor returns the minor of a matrix around the element (i, j). The minor is the determinant of the matrix
obtained from MS by deleting the i-th row and the j-th column.

Example

In> A := {{11273}1 {475/6}7 {71819}};
Out> {{1,2,3},{4,5,6},{7,8,9}};
In> PrettyForm(A);

/ \
1) 2) 3) |
| |
L c4) (5) (6) |
| |
7)) 8) (9 |
\ /

Oout> True;

In> Minor(A,1,2);

out> -6;

In> Determinant ({{2,3}, {8,9}});
Qut> -6;

See also:

CoFactor (), Determinant (), Inverse ()

CoFactor (M, i,)

cofactor of a matrix
Param M a matrix
Param i}, {j positive integers

{CoFactor} returns the cofactor of a matrix around the element (i, j). The cofactor is the minor times

$(-DAE+)S.

Example

56

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> A := {{112,3}/ {415/6}1 {71819}};
Out> {{1,2,3},{4,5,6},{7,8,9}};
In> PrettyForm(A);

/ \
1) 2) 3) |
| |
4) (5) (6) |
| |
7)) 8) (9 |
\ /

Out> True;

In> CoFactor(A,1,2);

Qut> 6;

In> Minor(A,1,2);

out> -6;

In> Minor(A,1,2) = (=1)"(1+2);
out> 6;

See also:
Minor (), Determinant (), Inverse ()

MatrixPower (mat, n)
get nth power of a square matrix

Param mat a square matrix

Param n an integer

{MatrixPower(mat,n)} returns the {n}th power of a square matrix {mat}. For positive {n} it evaluates dot
products of {mat} with itself. For negative {n} the nth power of the inverse of {mat} is returned. For {n}=0 the

identity matrix is returned.

SolveMatrix (M, v)
solve a linear system

Param M a matrix

Param v a vector

{SolveMatrix } returns the vector x that satisfies the equation $M*x = v$. The determinant of M should be

non-zero.

Example

In> A := {{1,2}, {3,4}};
out> {{1,2},{3,4}};

In> v := {5,6};

Out> {5,6};

In> x := SolveMatrix (A, Vv);
out> {-4,9/2};

In> A % Xx;

Oout> {5,6};

See also:
Inverse (), Solve(),PSolve (), Determinant ()

CharacteristicEquation (matrix, var)
get characteristic polynomial of a matrix

Param matrix a matrix

3.7. Linear Algebra

57

Yacas, Release 1.6.1

Param var a free variable

CharacteristicEquation returns the characteristic equation of “matrix”, using “var”. The zeros of this equation
are the eigenvalues of the matrix, Det(matrix-I*var);

Example

In> A:=DiagonalMatrix({a,b,c})

Oout> {{a,0,0},{0,b,0},{0,0,c}};

In> B:=CharacteristicEquation (A, x)

Out> (a—-x)* (b—-x) * (c—x);

In> Expand (B, x)

Out> (b+a+c) *x"2-x"3-((b+a) *ct+a*b) *x+a*bxc;

See also:
EigenValues (), EigenVectors ()

EigenValues (matrix)
get eigenvalues of a matrix

Param matrix a square matrix

EigenValues returns the eigenvalues of a matrix. The eigenvalues x of a matrix M are the numbers such that
$M*v=x*v$ for some vector. It first determines the characteristic equation, and then factorizes this equation,
returning the roots of the characteristic equation Det(matrix-x*identity).

Example

In> M:={{1,2},{2,1}}
Oout> {{1,2},{2,1}};
In> EigenValues (M)
out> {3,-1};

See also:
EigenVectors (), CharacteristicEquation ()

EigenVectors (A, eigenvalues)
get eigenvectors of a matrix

Param matrix a square matrix
Param eigenvalues list of eigenvalues as returned by {EigenValues}

{EigenVectors} returns a list of the eigenvectors of a matrix. It uses the eigenvalues and the matrix to set up n
equations with n unknowns for each eigenvalue, and then calls {Solve} to determine the values of each vector.

Example

In> M:={{1,2},{2,1}}

out> {{1,2},{2,1}};

In> e:=EigenValues (M)

out> {3,-1};

In> EigenVectors (M, e)

out> {{-ki2/ -1,ki2}, {-ki2,ki2}};

See also:
EigenValues (), CharacteristicEquation ()

Sparsity (matrix)
get the sparsity of a matrix

Param matrix a matrix

58 Chapter 3. Reference Manual

Yacas, Release 1.6.1

The function {Sparsity} returns a number between {0} and {1} which represents the percentage of zero entries
in the matrix. Although there is no definite critical value, a sparsity of {0.75} or more is almost universally
considered a “sparse” matrix. These type of matrices can be handled in a different manner than “full” matrices
which speedup many calculations by orders of magnitude.

Example

In> Sparsity (Identity(2))

OQut> 0.5;

In> Sparsity (Identity (10))

Out> 0.9;

In> Sparsity (HankelMatrix (10))
Out> 0.45;

In> Sparsity (HankelMatrix (100))
Out> 0.495;

In> Sparsity (HilbertMatrix (10))
Oout> 0;

In> Sparsity(ZeroMatrix(10,10))
out> 1;

Cholesky (A)
find the Cholesky decomposition

Param A a square positive definite matrix

{Cholesky} returns a upper triangular matrix {R} such that {Transpose(R)*R = A}. The matrix {A} must be
positive definite, { Cholesky} will notify the user if the matrix is not. Some families of positive definite matrices
are all symmetric matrices, diagonal matrices with positive elements and Hilbert matrices.

Example

In> A:={{4,-2,4,2},{-2,10,-2,-7},{4,-2,8,4},{2,-7,4,7}}

out> {{4,-2,4,2},{-2,10,-2,-7},1{4,-2,8,4},4{2,-7,4,7}};

In> R:=Cholesky (A);

Oout> {{2,-1,2,1},{0,3,0,-2},{0,0,2,1},{0,0,0,1}};

In> Transpose (R)*R = A

Out> True;

In> Cholesky (4xIdentity (5))

Out> {{2,0,0,0,0},{0,2,0,0,0},{0,0,2,0,0},{0,0,0,2,0},{0,0,0,0,2}};
In> Cholesky (HilbertMatrix(3))

Oout> {{1,1/2,1/3},{0,8qrt(1/12),Sqrt(1/12)},{0,0,Sqgrt (1/180) }};
In> Cholesky (ToeplitzMatrix({1,2,3}))

In function "Check"

CommandLine (1) : "Cholesky: Matrix is not positive definite"

See also:
IsSymmetric (), IsDiagonal (), Diagonal ()

LU (A)
find the LU decomposition

Param A square matrix
LU () performs LU decomposition of a matrix.

Example

In> A := {{1,2}, {3,4}}

Out> {{1,2},{3,4}}

In> {1,u} := LU(A)

Out> {{{1,0},{3,1}},{{1,2},{0,-2}}}

3.7. Linear Algebra 59

https://en.wikipedia.org/wiki/LU_decomposition

Yacas, Release 1.6.1

In> IsLowerTriangular (1)
Out> True

In> IsUpperTriangular (u)
Out> True

In> 1 % u

out> {{1,2},{3,4}}

See also:
LDU (), IsLowerTriangular (), IsUpperTriangular ()

LDU (A)
find the LDU decomposition

Param A square matrix
LDU () performs LDU decomposition of a matrix.

Example

In> A := {{1,2}, {3,4}}
out> {{1,2},{3,4}}

In> {1,d,u} := LDU(A)
Out> {{{1,0},{3,1}},{{1,0},{0,-2}},{{1,2},{0,1}}}
In> IsLowerTriangular (1)
Out> True

In> IsDiagonal (d)

Out> True

In> IsUpperTriangular (u)
Oout> True

In> 1 « d % u

out> {{1,2},{3,4}}

See also:
LU(), IsDiagonal (), IsLowerTriangular (), IsUpperTriangular ()

IsScalar (expr)
test for a scalar

Param expr a mathematical object

{IsScalar} returns True if {expr} is a scalar, F'alse otherwise. Something is considered to be a scalar if it’s
not a list.

Example

In> IsScalar(7)

Oout> True;

In> IsScalar (Sin (x)+x)
Out> True;

In> IsScalar ({x,v})
Out> False;

See also:
IsList (), IsVector (), IsMatrix()

IsVector ([pred], expr)
test for a vector

Param expr expression to test

Param pred predicate test (e.g. [sNumber, IsInteger, ...)

60 Chapter 3. Reference Manual

https://en.wikipedia.org/wiki/LU_decomposition#Definitions

Yacas, Release 1.6.1

{IsVector(expr)} returns True if {expr} is a vector, F'a lse otherwise. Something is considered to be a vector
if it’s a list of scalars. {IsVector(pred,expr)} returns True if {expr} is a vector and if the predicate test {pred}
returns True when applied to every element of the vector {expr}, False otherwise.

Example

In> IsVector({a,b,c})

Oout> True;

In> IsVector ({a, {b},c})

Out> False;

In> IsVector (IsInteger, {1,2,3})
Out> True;

In> IsVector (IsInteger,{1,2.5,3})
Out> False;

See also:
IsList (), IsScalar (), IsMatrix()

IsMatrix([pred] , expr)
test for a matrix

Param expr expression to test
Param pred predicate test (e.g. IsNumber, IsInteger, ...)

{IsMatrix(expr) } returns True if {expr} is a matrix, F'a I se otherwise. Something is considered to be a matrix
if it’s a list of vectors of equal length. {IsMatrix(pred,expr)} returns True if {expr} is a matrix and if the
predicate test {pred} returns True when applied to every element of the matrix {expr}, F'alse otherwise.

Example

In> IsMatrix (1)

Out> False;

In> IsMatrix({1,2})

Out> False;

In> IsMatrix ({{1,2},{3,4}})

Out> True;

In> IsMatrix (IsRational, {{1,2},{3,4}})

Out> False;

In> IsMatrix (IsRational, {{1/2,2/3},{3/4,4/5}})
Oout> True;

See also:
IsList (), IsVector()

IsSquareMatrix ([pred], expr)
test for a square matrix

Param expr expression to test
Param pred predicate test (e.g. IsNumber, IsInteger, ...)

{IsSquareMatrix(expr)} returns True if {expr} is a square matrix, Fa I se otherwise. Something is considered
to be a square matrix if it’s a matrix having the same number of rows and columns. {IsMatrix(pred,expr)}
returns True if {expr} is a square matrix and if the predicate test {pred} returns True when applied to every
element of the matrix {expr}, False otherwise.

Example

In> IsSquareMatrix ({{1,2},{3,4}});
Out> True;

3.7. Linear Algebra 61

Yacas, Release 1.6.1

In> IsSquareMatrix ({{1,2,3},{4,5,6}});

Out> False;

In> IsSquareMatrix (IsBoolean, {{1,2},{3,4}});

Out> False;

In> IsSquareMatrix(IsBoolean, {{True,False}, {False,True}});
Out> True;

See also:

IsMatrix()

IsHermitian (A)

test for a Hermitian matrix
Param A a square matrix

IsHermitian(A) returns True if {A} is Hermitian and Fa 1 se otherwise. A is a Hermitian matrix iff Conju-
gate(Transpose AS)=$AS. If $AS is a real matrix, it must be symmetric to be Hermitian.

Example

In> IsHermitian({{0,I},{-I,0}})
Oout> True;

In> IsHermitian ({{0,I},{2,0}})
Out> False;

See also:

IsUnitary ()

IsOrthogonal (A)

test for an orthogonal matrix
Param A square matrix

{IsOrthogonal(A)} returns True if {A} is orthogonal and False otherwise. AS is orthogonal iff
AS*Transpose(A) = Identity, or equivalently Inverse(A) = Transpose($AS).

Example

In> A := {{11212}1{211172}1{7212/71}};
Out> {{112/2}1{2!11_2}1{_2127_1}};
In> PrettyForm(A/3)

/ \
I/ 1N / 2\ / 2\ \
e laoa)
:/2\ / 1\ / -2\ :
sy lala)
:/72\/ \/71\:
e

/

\

Out> True;

In> IsOrthogonal (A/3)
Out> True;

IsDiagonal (A)

test for a diagonal matrix

62

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Param A a matrix
{IsDiagonal(A)} returns True if {A} is a diagonal square matrix and F'a I se otherwise.

Example

In> IsDiagonal (Identity (5))

Out> True;

In> IsDiagonal (HilbertMatrix(5))
Out> False;

IsLowerTriangular (A)

test for a lower triangular matrix
Param A a matrix

A lower/upper triangular matrix is a square matrix which has all zero entries above/below the diagonal. {Is-
LowerTriangular(A)} returns True if {A} is a lower triangular matrix and False otherwise. {IsUpperTrian-
gular(A)} returns True if {A} is an upper triangular matrix and F'a 1 se otherwise.

Example

In> IsUpperTriangular (Identity(5))

Out> True;

In> IsLowerTriangular (Identity (5))

Out> True;

In> IsLowerTriangular ({{1,2},{0,1}})
Out> False;

In> IsUpperTriangular({{1,2},{0,1}})
Out> True;

A non-square matrix cannot be triangular:
In> IsUpperTriangular({{1,2,3},{0,1,2}})
Out> False;

See also:

IsDiagonal ()

IsSymmetric (A)

test for a symmetric matrix
Param A a matrix

{IsSymmetric(A)} returns True if {A} is symmetric and False otherwise. A is symmetric iff Transpose

($AS) =$AS.

Example

In>A = {{lIOIOIOIl}V{OIZIOIOIO}V{OIOI3IOIO}V
{070101410}1{170101015}};
In> PrettyForm(A)

/ \
1) (0) (O0O) (O) (1) |
| |
o) (2) (0) (O) CO) |
| |
[C0) (0) (3) 0) 0) |
| |
[C0) (O0) (O) (4) (0 |
| |
1) (0) (O0O) (O) (5) |
\ /

Out> True;

3.7. Linear Algebra 63

Yacas, Release 1.6.1

In> IsSymmetric(A)
Out> True;

See also:
IsHermitian (), IsSkewSymmetric ()

IsSkewSymmetric (A)
test for a skew-symmetric matrix

Param A a square matrix

{IsSkewSymmetric(A)} returns True if {A} is skew symmetric and Fa I se otherwise. A is skew symmetric
iff $Transpose(A)$ =$-AS$.

Example

In> A := {{0,-1},{1,0}}
Oout> {{0,-1},{1,0}};
In> PrettyForm (%)

/ \

I (0) (-1) |

| \
1) (0) \

\ /
out> True;

In> IsSkewSymmetric (A);
Out> True;

See also:
IsSymmetric (), IsHermitian ()

IsUnitary (A)
test for a unitary matrix

Param A a square matrix

This function tries to find out if A is unitary. A matrix A is orthogonal iff $A~(-1)$ = Transpose(Conju-
gate($AS)). This is equivalent to the fact that the columns of A build an orthonormal system (with respect to
the scalar product defined by {InProduct}).

Example

In> IsUnitary ({{0,I},{-I,0}})
Out> True;

In> IsUnitary ({{0,I},{2,0}})
Out> False;

See also:
IsHermitian (), IsSymmetric/()

IsIdempotent (A)
test for an idempotent matrix

Param A a square matrix

{IsIdempotent(A)} returns True if {A} is idempotent and Fa I se otherwise. AS is idempotent iff $AN2=AS.
Note that this also implies that AS raised to any power is also equal to AS.

Example

64 Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> IsIdempotent (ZeroMatrix (10,10));
Out> True;

In> IsIdempotent (Identity (20))

Out> True;

Special matrices

JacobianMatrix (functions, variables)
calculate the Jacobian matrix of n functions in n variables

Param functions an n-dimensional vector of functions
Param variables an n-dimensional vector of variables

The function {JacobianMatrix} calculates the Jacobian matrix of n functions in n variables. The (i,j)-th
element of the Jacobian matrix is defined as the derivative of i-th function with respect to the j-th variable.

Example

In> JacobianMatrix({Sin(x),Cos(y)}, {x,v});
Oout> {{Cos(x),0},{0,-Sin(y) }};
In> PrettyForm (%)

/

(Cos(x)) (0)

(0) (—-(Sin(y)))

~ = — —

|
|
|
\

VandermondeMatrix (vector)
create the Vandermonde matrix

Param vector an n-dimensional vector

The function {VandermondeMatrix} calculates the Vandermonde matrix of a vector. The (i,j)-th element
of the Vandermonde matrix is defined as $i*(j-1)$.

Example

In> VandermondeMatrix ({1,2,3,4})
Out> {{1,1,1,1},{1,2,3,4},{1,4,9,16},{1,8,27,64}};
In>PrettyForm (%)

/ \
1) (1) 1) (1) |
| |
1) (2) (3) (4) |
| |
1) 4) (9) (1) |
| |
1) (8) (27) (64) |
\ /

HessianMatrix (function, var)
create the Hessian matrix

Param function a function in n variables
Param var an n-dimensional vector of variables

The function {HessianMatrix} calculates the Hessian matrix of a vector. If $f(x)$ is a function of an n-
dimensional vector x, then the (i,j)-th element of the Hessian matrix of the function $f(x)$ is defined
as $ Deriv(x[i]) Deriv(x[j]) f(x) $. If the third order mixed partials are continuous, then the Hessian matrix is
symmetric (a standard theorem of calculus). The Hessian matrix is used in the second derivative test to discern
if a critical point is a local maximum, a local minimum or a saddle point.

3.7. Linear Algebra 65

Yacas, Release 1.6.1

Example

In> HessianMatrix (3xx"2-2+xxy+y"2-8x*y,
Out> {{61_2}1{_2!2}};

In> PrettyForm (%)
/

{(x,v})

(6) (-2

(-2) |

~— — —

|
|
|
\

HilbertMatrix (n)
create a Hilbert matrix

Param n,m positive integers

The function {HilbertMatrix } returns the {n} by {m} Hilbert matrix if given

two arguments, and the square {n}

by {n} Hilbert matrix if given only one. The Hilbert matrix is defined as { A(i,j) = 1/(i+j-1)}. The Hilbert matrix

is extremely sensitive to manipulate and invert numerically.

Example

In> PrettyForm(HilbertMatrix(4))
/ \
I 1) / \ / \ / A
| (I T e) I
| N2/ \ / \ /]
| |
I/ 1N/ 1\N/1\N/1\ |
=11 =1 | [[
N2/ \N3/\ / \ /|
| |
|/ \ / \ / \ / A
=11 =11 I
I\ 3/ \ / \ /N 6/ |
| |
|/ \ / \ / \ / A
=11 —=011—=-11T-=-1 1
' N4/ \N5/\N6/\N17/ |
\ /
See also:

HilbertInverseMatrix ()

HilbertInverseMatrix (n)
create a Hilbert inverse matrix

Param n positive integer

The function {HilbertInverseMatrix} returns the {n} by {n} inverse of the
Hilbert inverse matrices have integer entries that grow in magnitude rapidly.

corresponding Hilbert matrix. All

Example
In> PrettyForm(HilbertInverseMatrix (4))
T (16) (=120) (240) (—-140) T
: (=120) (1200) (-2700) (1680) }
: (240) (-2700) (6480) (—-4200) 1

66

Chapter 3. Reference Manual

Yacas, Release 1.6.1

| \
| (—-140) (1680) (—4200) (2800) \
\ /

See also:
HilbertMatrix()

ToeplitzMatrix (N)
create a Toeplitz matrix

Param N an n-dimensional row vector

The function {ToeplitzMatrix } calculates the Toeplitz matrix given an n-dimensional row vector. This matrix

has the same entries in all diagonal columns, from upper left to lower right.

Example
In> PrettyForm(ToeplitzMatrix({1,2,3,4,5}))
/ \
1) (2) (3) (4) (5) |
| |
C2) (1) (2) (3) (4) |
| |
[(3) (2) (1) (2) (3) |
| I
4) (3) (2) (1) (2) |
| |
[(5) (4) (3) (2) (1) |
\ /

WronskianMatrix (func, var)
create the Wronskian matrix

Param func an n-dimensional vector of functions

Param var a variable to differentiate with respect to

The function {WronskianMatrix} calculates the Wronskian matrix of n functions. The Wronskian matrix is
created by putting each function as the first element of each column, and filling in the rest of each column by the
($i-1%)-th derivative, where i is the current row. The Wronskian matrix is used to verify that the n functions
are linearly independent, usually solutions to a differential equation. If the determinant of the Wronskian matrix

is zero, then the functions are dependent, otherwise they are independent.

Example

In> WronskianMatrix ({Sin(x),Cos(x),x"4},x);

Out> {{Sin(x),Cos(x),x"4}, {Cos(x),-Sin(x),4*x"3},
{-Sin(x),-Cos(x),12*x"2}};

In> PrettyForm (%)

/

| (Sin(x)) (Cos(x)) / 4\

| \ x /

|

| (Cos(x)) (—-(sin(x))) / 3\
| \ 4« x /
|

[(=(8in(x))) (—-(Cos(x))) / 2\
| \ 12 » x /
\

The last element is a linear combination of the first two,

\
|
[
|
|
|
|
|
|

/

so the determinant is z€

3.7. Linear Algebra

67

ro:

Yacas, Release 1.6.1

In> A:=Determinant (WronskianMatrix({x"4,x"3,2+xx"4
+ 3*xx"3},x))

out> xMM*x3xx"2*% (24*xX72+18xx) =X 4% (8*xx"3+9%xX"2) x6*X
+ (2#xXMA43%x"3) ¥4 %X "3%6*xxXx—4*x 6% (24xx"2+18*x)+x"3

* (8*xX"3+9xxX"2) 124X 2= (2+xX"M44+3%x"3) x3*xxX"2+12*x"2;
In> Simplify (A)

out> 0;

SylvesterMatrix (polyl, poly2, variable)

calculate the Sylvester matrix of two polynomials
Param polyl polynomial
Param poly2 polynomial
Param variable variable to express the matrix for

The function {SylvesterMatrix} calculates the Sylvester matrix for a pair of polynomials. The Sylvester matrix
is closely related to the resultant, which is defined as the determinant of the Sylvester matrix. Two polynomials
share common roots only if the resultant is zero.

Example

In> exl:= x"24+2*x-a

Qut> x"2+2+x-a;

In> ex2:= x"2+a*xx—4

Oout> x"2+axx-4;

In> A:=SylvesterMatrix (exl,ex2, x)

Qut> {{1,2,-a,0},{0,1,2,-a},
{l,a,-4,0},{0,1,a,-4}};

In> B:=Determinant (A7)

Oout> l6-a”2xa—- —-8xa-4xata”2- —-2+xa”2-16-4xa;
In> Simplify (B)

Qut> 3*xa”2-a”"3;

The above example shows that the two polynomials have common
zeros 1if $ a = 3 $.

See also:

Determinant (), Simplify (), Solve (), PSolve ()

3.8 Operations on polynomials

This chapter contains commands to manipulate polynomials. This includes functions for constructing and evaluating
orthogonal polynomials.

Expand (expr)
Expand (expr, var)
Expand (expr, varlist)

transform a polynomial to an expanded form
Param expr a polynomial expression
Param var a variable
Param varlist a list of variables

This command brings a polynomial in expanded form, in which polynomials are represented in the form ¢y +
c12 + cox? 4 ... 4 cp,z™. In this form, it is easier to test whether a polynomial is zero, namely by testing whether
all coefficients are zero. If the polynomial {expr} contains only one variable, the first calling sequence can be

68

Chapter 3. Reference Manual

Yacas, Release 1.6.1

used. Otherwise, the second form should be used which explicitly mentions that {expr} should be considered
as a polynomial in the variable {var}. The third calling form can be used for multivariate polynomials. Firstly,
the polynomial {expr} is expanded with respect to the first variable in {varlist}. Then the coefficients are all
expanded with respect to the second variable, and so on.

Example

In> Expand((l+x)”"5)

Out> x"5+5xxM4+10#x"3+10%x"2+5xx+1
In> Expand((l+x-y) "2, Xx);

out> x"2+42x (1-y)*x+(l-y) "2

In> Expand((l+x-y) "2, {x,v})

out> X2+ ((=2)*xy+2) *»x+y"2-2xy+1

See also:
ExpandBrackets ()

Degree (expr[, var])
degree of a polynomial

Param expr a polynomial
Param var a variable occurring in {expr}

This command returns the degree of the polynomial expr with respect to the variable var. If only one variable
occurs in expr, the first calling sequence can be used. Otherwise the user should use the second form in which
the variable is explicitly mentioned.

Example

In> Degree (x"5+x-1);
Out> 5;

In> Degree (atb*x"3, a);
Oout> 1;

In> Degree (atb*x"3, x);
Out> 3;

See also:
Expand (), Coef ()

Coef (expr, var, order)
coefficient of a polynomial

Param expr a polynomial
Param var a variable occurring in {expr}
Param order integer or list of integers

This command returns the coefficient of {var} to the power {order} in the polynomial {expr}. The parameter
{order} can also be a list of integers, in which case this function returns a list of coefficients.

Example

In> e := Expand((atx) ™4, x)

Out> xM4+4xa*x"3+(a”2+ (2*a)"2+a"2) *x"2+
(a”2*2xa+2xa"3) «xx+a"4;

In> Coef(e,a,2)

out> 6%*x"2;

In> Coef(e,a,0 .. 4)

out> {x"4,4xx"3,6*x"2,4xx,1};

3.8. Operations on polynomials 69

http://en.wikipedia.org/wiki/Degree_of_a_polynomial

Yacas, Release 1.6.1

See also:

Expand (), Degree (), LeadingCoef ()

Content (expr)

content of a univariate polynomial
Param expr univariate polynomial
This command determines the content of a univariate polynomial.

Example

In> poly := 2xx"2 + 4xx;

out> 2+xx"2+4xx;

In> ¢ := Content (poly);

out> 2+x;

In> pp := PrimitivePart (poly);
out> x+2;

In> Expand (pp*c);

out> 2+xx"2+4xx;

See also:

PrimitivePart (), Gecd ()

PrimitivePart (expr)

primitive part of a univariate polynomial
Param expr univariate polynomial

This command determines the primitive part of a univariate polynomial. The primitive part is what remains after
the content is divided out. So the product of the content and the primitive part equals the original polynomial.

Example

In> poly := 2%x"2 + 4xx;

out> 2*xx"2+4xx;

In> ¢ := Content (poly);

out> 2*x;

In> pp := PrimitivePart (poly);
out> x+2;

In> Expand (pp=*c);

out> 2*xx"2+4xx;

See also:

Content ()

LeadingCoef (poly)

leading coefficient of a polynomial
Param poly a polynomial
Param var a variable

This function returns the leading coefficient of {poly}, regarded as a polynomial in the variable {var}. The
leading coefficient is the coefficient of the term of highest degree. If only one variable appears in the expression
{poly}, it is obvious that it should be regarded as a polynomial in this variable and the first calling sequence
may be used.

Example

70

Chapter 3. Reference Manual

http://en.wikipedia.org/wiki/Content_(algebra)

Yacas, Release 1.6.1

In> poly := 2xx"2 + 4xx;

Qut> 2xx"2+4+*x;

In> lc := LeadingCoef (poly);

out> 2;

In> m := Monic(poly);

out> x"2+2xx;

In> Expand (lcxm);

Qut> 2xx"2+4+*x;

In> LeadingCoef (2xa”2 + 3%xaxb”2 + 5, a);
out> 2;

In> LeadingCoef (2xa”2 + 3%axb”2 + 5, b);
Out> 3xaj;

See also:
Coef (),Monic()

Monic (poly)
monic part of a polynomial

Param poly a polynomial
Param var a variable

This function returns the monic part of {poly}, regarded as a polynomial in the variable {var}. The monic part
of a polynomial is the quotient of this polynomial by its leading coefficient. So the leading coefficient of the
monic part is always one. If only one variable appears in the expression {poly}, it is obvious that it should be
regarded as a polynomial in this variable and the first calling sequence may be used.

Example

In> poly := 2%x"2 + 4xx;

Qut> 2xx"2+4+*x;

In> lc := LeadingCoef (poly);

out> 2;

In> m := Monic(poly);

out> x"2+2+xx;

In> Expand(lcxm);

Qut> 2xx"2+4+*x;

In> Monic (2*«a”2 + 3*xaxb”2 + 5, a);
out> a2+ (ax3xb”™2)/2+5/2;

In> Monic(2*«a”2 + 3*xaxb”2 + 5, b);
out> b"2+(2xa”2+5)/ (3*a);

See also:
LeadingCoef ()

SquareFree (p)
return the square-free part of polynomial

Param p a polynomial in {x}

Given a polynomial $$ p = p[1]*n[1]* ... * p[m]*n[m] $$ with irreducible polynomials $ p[i] $, return the
square-free version part (with all the factors having multiplicity 1): $$ p[1]* ... * p[m] $$

Example

In> Expand((x+1)"5)

Oout> x"5+5xxM4+10%x"3+10xx"2+5+x+1;
In> SquareFree (%)

Oout> (x+1)/5;

3.8. Operations on polynomials 71

Yacas, Release 1.6.1

In> Monic (%)
Oout> x+1;

See also:

FindRealRoots (), NumRealRoots (), MinimumBound (), MaximumBound (), Factor ()

SquareFreeFactorize (p, x)

return square-free decomposition of polynomial
Param p a polynomial in {x}

Given a polynomial p having square-free decomposition $$ p = p[1]*n[1] * ... * p[m]*n[m] $$ where $p[i]$
are square-free and $n[i+1]>n[i]$, return the list of pairs ($p[i]$, $n[i]$)

Example

In> Expand((x+1)"5)

Oout> x"5+5xxM4+10%x"3+10xx"2+5%x+1
In> SquareFreeFactorize (%, x)

out> {{x+1,5}}

See also:

Factor ()

Horner (expr, var)

convert a polynomial into the Horner form
Param expr a polynomial in {var}
Param var a variable

This command turns the polynomial {expr}, considered as a univariate polynomial in {var}, into Horner form.
A polynomial in normal form is an expression such as $$c[0] + c[1]*x + ... + c[n]*x”n$$. If one converts this
polynomial into Horner form, one gets the equivalent expression $$(...(c[n] * x + c[n-1]) * x + ... + c[1]) * x
+ c[0]$$. Both expression are equal, but the latter form gives a more efficient way to evaluate the polynomial as
the powers have disappeared.

Example

In> exprl:=Expand((l+x)"4)
Out> x"M4+4xx"3+6*x"2+4xx+1;
In> Horner (exprl, x)

Out> (((x+4) *x+6) »x+4) xx+1;

See also:

Expand (), ExpandBrackets (), EvaluateHornerScheme ()

ExpandBrackets (expr)

expand all brackets
Param expr an expression

This command tries to expand all the brackets by repeatedly using the distributive laws $a * (b+c) = a*b + a*c$
and $(a+b) * ¢ = a*c + b*c$. It goes further than {Expand}, in that it expands all brackets.

Example

In> Expand((a—-x)* (b-x),x)

Out> x"2-(bta)»x+a*b;

In> Expand((a—-x)~*(b-x), {x,a,b})
Oout> x"2-(b+ta) »x+b*a;

72

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> ExpandBrackets ((a—-x)* (b—x))
Out> axb-x*xbt+x"2-ax*x;

See also:
Expand ()

EvaluateHornerScheme (coeffs, x)
fast evaluation of polynomials

Param coeffs a list of coefficients
Param x expression

This function evaluates a polynomial given as a list of its coefficients, using the Horner scheme. The list of
coefficients starts with the 0-th power.

OrthoP (n, Xx);
Legendre and Jacobi orthogonal polynomials

Param n degree of polynomial
Param x point to evaluate polynomial at
Param a}, {b parameters for Jacobi polynomial

The first calling format with two arguments evaluates the Legendre polynomial of degree {n} at the
point {x}. The second form does the same for the Jacobi polynomial with parameters {a} and {b},
which should be both greater than -1. The Jacobi polynomials are orthogonal with respect to the weight
function $(1-x)*a (1+x)*b$ on the interval [-1,1]. They satisfy the recurrence relation $$P(n,a,b,x) =
(2*n+a+b-1)/(2*n+a+b-2) $3 $$ ((a"2-b"2+x*(2*n+a+b-2)*(n+a+b))/(2*n*(n+a+b))) * P(n-1,a,b,x)$$ $$ -
((n+a-1)*(n+b-1)*(2*n+a+b))/(n*(n+a+b)*(2*n+a+b-2))*P(n-2,a,b,x)$$ for $n > 1%, with $P(0,a,b,x) = 18,
$$P(1,a,b,x) = (a-b)/2+x*(1+(a+b)/2)$$.

OrthoH(n, Xx);
Hermite orthogonal polynomials

Param n degree of polynomial
Param x point to evaluate polynomial at

This function evaluates the Hermite polynomial of degree {n} at the point {x}. The Hermite polynomials are
orthogonal with respect to the weight function $Exp(-x2/2)$ on the entire real axis. They satisfy the recurrence
relation $$ H(n,x) = 2*x*H(n-1,x) - 2*(n-1)*H(n-2,x) $$ for $n > 1$, with $H(0,x) = 1$, $H(1,x) = 2*x$. Most
of the work is performed by the internal function {OrthoPoly}.

Example

In> OrthoH (3, x);
out> x* (8+x"2-12);
In> OrthoH (6, 0.5);
Out> 31;

See also:
OrthoHSum (), OrthoPoly ()

OrthoG(n, a, Xx);
Gegenbauer orthogonal polynomials

Param n degree of polynomial
Param a parameter

Param x point to evaluate polynomial at

3.8. Operations on polynomials 73

Yacas, Release 1.6.1

This function evaluates the Gegenbauer (or ultraspherical) polynomial with parameter {a} and degree {n} at
the point {x}. The parameter {a} should be greater than -1/2. The Gegenbauer polynomials are orthogonal
with respect to the weight function $(1-x~2)*(a-1/2)$ on the interval [-1,1]. Hence they are connected to the
Jacobi polynomials via $$ G(n, a, x) = P(n, a-1/2, a-1/2, x) $$. They satisfy the recurrence relation $$ G(n,a,x)
= 2¥(1+(a-1)/n)*x*G(n-1,a,x) $$ $$ -(1+2*(a-2)/n)*G(n-2,a,x) $$ for $n>1$, with $G(0,a,x) = 1$, $G(1,a,x) =
2%x$.

OrthoL(n, a, x);

Laguerre orthogonal polynomials
Param n degree of polynomial
Param a parameter
Param x point to evaluate polynomial at

This function evaluates the Laguerre polynomial with parameter {a} and degree {n} at the point {x}. The
parameter {a} should be greater than -1. The Laguerre polynomials are orthogonal with respect to the weight
function $x”a * Exp(-x)$ on the positive real axis. They satisfy the recurrence relation $$ L(n,a,x) = (2+(a-1-
x)/n)* L(n-1,a,x) $$ $$ -(1-(a-1)/n)*L(n-2,a,x) $$ for $n>1$, with $L(0,a,x) =13, $L(1,a,x) =a + 1 - x$.

OrthoT (n, x);

Chebyshev polynomials
Param n degree of polynomial
Param x point to evaluate polynomial at

These functions evaluate the Chebyshev polynomials of the first kind $T(n,x)$ and of the second kind
$U(n,x)$, of degree {n} at the point {x}. (The name of this Russian mathematician is also sometimes spelled
{Tschebyscheff}.) The Chebyshev polynomials are orthogonal with respect to the weight function $(1-x"2)"(-
1/2)$. Hence they are a special case of the Gegenbauer polynomials $G(n,a,x)$, with $a=0$. They satisfy the
recurrence relations $$ T(n,x) = 2* x* T(n-1,x) - T(n-2,x) $$, $$ U(n,x) = 2* x* U(n-1,x) - U(n-2,x) $$ for $n
> 18, with $T(0,x) = 18, $T(1,x) = x$, $U(0,x) = 1%, $U(1,x) = 2*x$.

Example

In> OrthoT (3, x);
out> 2#+x+* (2+x"°2-1)-%;
In> OrthoT (10, 0.9);
Out> -0.2007474688;
In> OrthoU (3, x);
out> 4dxxx (2+x"2-1);
In> OrthoU (10, 0.9);
out> -2.2234571776;

See also:

OrthoG(),OrthoTSum(),OrthoUSum (), OrthoPoly ()

OrthoPSum(c, Xx);

sums of series of orthogonal polynomials
Param c list of coefficients
Param a}, {b parameters of specific polynomials
Param x point to evaluate polynomial at

These functions evaluate the sum of series of orthogonal polynomials at the point {x}, with given list of coeffi-
cients {c} of the series and fixed polynomial parameters {a}, {b} (if applicable). The list of coefficients starts
with the lowest order, so that for example OrthoLSum(c, a, x) = c[1] L[0](a,x) + c¢[2] L[1](a,x) + ... + c[N] L[N-
1](a,x). See pages for specific orthogonal polynomials for more details on the parameters of the polynomials.

74

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Most of the work is performed by the internal function {OrthoPolySum}. The individual polynomials entering
the series are not computed, only the sum of the series.

Example

In> Expand (OrthoPSum({1,0,0,1/7,1/8}, 3/2, \
2/3, x));

Out> (7068985xx"4)/3981312+(1648577xx"3)/995328+
(-3502049%x"2) /4644864+ (-4372969+xx) /6967296
+28292143/27869184;

See also:
OrthoP (),OrthoG(),OrthoH (), OrthoL (), OrthoT (), OrthoU(), OrthoPolySum/()

OrthoPoly (name, n, par, x)
internal function for constructing orthogonal polynomials

Param name string containing name of orthogonal family
Param n degree of the polynomial

Param par list of values for the parameters

Param x point to evaluate at

This function is used internally to construct orthogonal polynomials. It returns the {n}-th polynomial from the
family {name} with parameters {par} at the point {x}. All known families are stored in the association list re-
turned by the function { KnownOrthoPoly()}. The name serves as key. At the moment the following names are
known to Yacas: {“Jacobi’}, {“Gegenbauer’}, {“Laguerre”}, {“Hermite”}, {*“Tschebl1”}, and {“Tscheb2”}.
The value associated to the key is a pure function that takes two arguments: the order {n} and the extra param-
eters {p}, and returns a list of two lists: the first list contains the coefficients { A,B} of the n=1 polynomial, i.e.
$A+B*x$; the second list contains the coefficients { A,B,C} in the recurrence relation, i.e. $P[n] = (A+B*x)*P[n-
11+C*P[n-2]$. (There are only 3 coefficients in the second list, because none of the polynomials use $C+D*x$
instead of C in the recurrence relation. This is assumed in the implementation!) If the argument {x} is numer-
ical, the function {OrthoPolyNumeric} is called. Otherwise, the function {OrthoPolyCoeffs} computes a list of
coefficients, and {EvaluateHornerScheme} converts this list into a polynomial expression.

See also:
OrthoP (),0rthoG(),OrthoH (), OrthoL(),OrthoT (),OrthoU(), OrthoPolySum/()

OrthoPolySum (name, c, par, x)
internal function for computing series of orthogonal polynomials

Param name string containing name of orthogonal family
Param c list of coefficients

Param par list of values for the parameters

Param x point to evaluate at

This function is used internally to compute series of orthogonal polynomials. It is similar to the function {Or-
thoPoly} and returns the result of the summation of series of polynomials from the family {name} with param-
eters {par} at the point {x}, where {c} is the list of coefficients of the series. The algorithm used to compute
the series without first computing the individual polynomials is the Clenshaw-Smith recurrence scheme. (See
the algorithms book for explanations.) If the argument {x} is numerical, the function { OrthoPolySumNumeric}
is called. Otherwise, the function {OrthoPolySumCoeffs} computes the list of coefficients of the resulting
polynomial, and {EvaluateHornerScheme} converts this list into a polynomial expression.

See also:

3.8. Operations on polynomials 75

Yacas, Release 1.6.1

OrthoPSum (), OrthoGSum (), OrthoHSum (), OrthoLSum(), OrthoTSum(), OrthoUSum(),
OrthoPoly ()

3.9 List operations

Most objects that can be of variable size are represented as lists (linked lists internally). Yacas does implement arrays,
which are faster when the number of elements in a collection of objects doesn’t change. Operations on lists have better
support in the current system.

Head (list)
Returns the first element of a list

Param list a list

This function returns the first element of a list. If it is applied to a general expression, it returns the first operand.
An error is returned if 1ist is an atom.

Example

In> Head({a,b,c})
Out> a;

In> Head(f(a,b,c));
Oout> a;

See also:
Tail (), Length ()

Tail (list)
Returns a list without its first element

Param list a list
This function returns 11ist without its first element.

Example

In> Tail({a,b,c})
Oout> {b,c};

See also:
Head (), Length ()

Length (object)
The length of a list or string

Param object a list or string
Length returns the length of a list or string.

Example

In> Length({a,b,c})
Out> 3;

In> Length ("abcdef");
Oout> 6;

See also:

Head (), Tail(),Nth(), Count ()

76 Chapter 3. Reference Manual

Yacas, Release 1.6.1

Map (fn, list)
apply an n-ary function to all entries in a list

Param fn to apply
Param list list of lists of arguments

This function applies £n to every list of arguments to be found in 1ist. So the first entry of 1ist should be
a list containing the first, second, third, ... argument to £n, and the same goes for the other entries of 1ist.
The function can either be given as a string or as a pure function (see Apply () for more information on pure
functions).

Example

In> MapSingle("Sin",{a,b,c});
Qut> {Sin(a),Sin(b),Sin(c) };
In> Map ("+", {{a,b}, {c,d}});
out> {a+tc,b+d};

See also:
MapSingle (), MapArgs (), Apply ()

MapSingle (fn, list)
apply a unary function to all entries in a list

Param fn function to apply
Param list list of arguments

The function fn is successively applied to all entries in 1ist, and a list containing the respective results is
returned. The function can be given either as a string or as a pure function (see Apply () for more information
on pure functions).

The /@ operator provides a shorthand for MapSingle ().

Example

In> MapSingle("Sin", {a,b,c});

Out> {Sin(a),Sin(b),Sin(c) };

In> MapSingle ({{x},x"2}, {a,2,c});
Out> {a”2,4,c"2};

See also:

Map (), MapArgs (), /@ (), Apply ()

MakeVector (var, n)
vector of uniquely numbered variable names

Param var free variable
Param n length of the vector

A list of length n is generated. The first entry contains the identifier var with the number 1 appended to it, the
second entry contains var with the suffix 2, and so on until the last entry which contains var with the number
n appended to it.

Example

In> MakeVector (a, 3)
Out> {al,a2,a3};

See also:

RandomIntegerVector (), ZeroVector ()

3.9. List operations 77

Yacas, Release 1.6.1

Select (pred, list)

select entries satisfying some predicate
Param pred a predicate

Param list a list of elements to select from

Select returns a sublist of 1ist which contains all the entries for which the predicate pred returns True

when applied to this entry.

Example

In> Select ("IsInteger",{a,b,2,c,3,d,4,e,£f})

Oout> {2,3,4};

See also:

Length (), Find(), Count ()

Nth (list, n)

return the n-th element of a list
Param list list to choose from

Param n index of the entry to pick

The entry with index n from 11 st is returned. The first entry has index 1. It is possible to pick several entries

of the list by taking n to be a list of indices.

More generally, Nt h returns the n-th operand of the expression passed as first argument.

An alternative but equivalent form of Nth (1ist, n) islist[n].

Example

In> 1lst := {a,b,c,13,19};
Out> {a,b,c,13,19};

In> Nth(lst, 3);

Oout> c;

In> 1st[3];

out> c;

In> Nth(lst, {3,4,1});
Out> {c,13,a};

In> Nth (bx (at+c), 2);

Oout> a+c;

See also:

Select (), Nth ()

Reverse (list)

return the reversed list (without touching the original)
Param list list to reverse

This function returns a list reversed, without
DestructiveReverse (), but safer and slower.

Example

changing

the

original list. It is similar to

In> lst:={a,b,c,13,19}
Oout> {a,b,c,13,19};

In> revlst:=Reverse (lst)
Out> {19,13,c,b,a};

78

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> 1st
Out> {a,b,c,13,19};

See also:
FlatCopy (), DestructiveReverse ()

List (exprl, expr2, ...)
construct a list

Param exprl
Param expr2
Param ... expressions making up the list

A list is constructed whose first entry is exprl, the second entry is expr2, and so on. This command is
equivalent to the expression {exprl, expr2, ...}.

Example

In> List();

Out> {};

In> List(a,b);

Oout> {a,b};

In> List(a,{1,2},d);
Out> {a,{1,2},d};

See also:
UnList (), Listify ()

UnList (list)
convert a list to a function application

Param list list to be converted

This command converts a list to a function application. The first entry of 1ist is treated as a function atom,
and the following entries are the arguments to this function. So the function referred to in the first element of
1ist is applied to the other elements.

Note that 1ist is evaluated before the function application is formed, but the resulting expression is left un-
evaluated. The functions {UnList()} and {Hold()} both stop the process of evaluation.

Example

In> UnList ({Cos, x});

Oout> Cos (x);

In> UnList ({f});

out> f();

In> UnList ({Taylor,x,0,5,Cos(x)});
Out> Taylor(x,0,5)Cos(x);

In> Eval (%) ;

out> 1-x"2/2+x"4/24;

See also:
List(),Listify (), Hold()

Listify (expr)
convert a function application to a list

Param expr expression to be converted

3.9. List operations 79

Yacas, Release 1.6.1

The parameter expr is expected to be a compound object, i.e. not an atom. It is evaluated and then converted
to a list. The first entry in the list is the top-level operator in the evaluated expression and the other entries are
the arguments to this operator. Finally, the list is returned.

Example

In> Listify (Cos(x));
Out> {Cos,x};

In> Listify (3=*a);
out> {x,3,a};

See also:
List (),UnList (), IsAtom()

Concat (listl, list2, ...)
concatenate lists

Param list1
Param list2
Param ... lists to concatenate
The lists 1ist1, 1ist2, ... are evaluated and concatenated. The resulting big list is returned.

Example

In> Concat ({a,b}, {c,d});

Out> {a,b,c,d};

In> Concat ({5}, {a,b,c}, {{£f(x)}});
out> {5,a,b,c, {f(x)}};

See also:
ConcatStrings (), : (), Insert ()

Delete (list, n)
delete an element from a list

Param list list from which an element should be removed
Param n index of the element to remove

This command deletes the n-th element from “list”. The first parameter should be a list, while “n” should be a
positive integer less than or equal to the length of “list”. The entry with index “n” is removed (the first entry has
index 1), and the resulting list is returned.

Example

In> Delete({a,b,c,d,e, £}, 4);
out> {a,b,c,e,f};

See also:
DestructiveDelete (), Insert (), Replace ()

Insert (list, n, expr)
insert an element into a list

Param list list in which expr should be inserted
Param n index at which to insert

Param expr expression to insertin 1ist

80 Chapter 3. Reference Manual

Yacas, Release 1.6.1

The expression “expr” is inserted just before the n-th entry in “list”. The first parameter “list” should be a list,
while “n” should be a positive integer less than or equal to the length of “list” plus one. The expression “expr”
is placed between the entries in “list” with entries “n-1" and “n”. There are two border line cases: if “n” is 1,
the expression “expr” is placed in front of the list (just as by the {:} operator); if “n” equals the length of “list”
plus one, the expression “expr” is placed at the end of the list (just as by { Append}). In any case, the resulting
list is returned.

Example

In> Insert ({a,b,c,d}, 4, x);
Out> {a,b,c,x,d};
In> Insert ({a,b,c,d}, 5, x);
Out> {a,b,c,d, x};
In> Insert ({a,b,c,d}, 1, x);
Oout> {x,a,b,c,d};

See also:
DestructivelInsert (), : (), Append (), Delete ()

Replace (list, n, expr)
replace an entry in a list

Param list list of which an entry should be replaced
Param n index of entry to replace
Param expr expression to replace the n-th entry with

The n-th entry of 1ist is replaced by the expression expr. This is equivalent to calling Delete () and
Insert () in sequence. To be precise, the expression Replace (1ist, n, expr) has the same result as
the expression Insert (Delete (list, n), n, expr).

Example

In> Replace({a,b,c,d,e, £}, 4, x);
Out> {a,b,c,x,e,f};

See also:
Delete (), Insert (), DestructiveReplace ()

FlatCopy (list)
copy the top level of a list

Param list list to be copied

A copy of 1ist is made and returned. The list is not recursed into, only the first level is copied. This is useful
in combination with the destructive commands that actually modify lists in place (for efficiency).

The following shows a possible way to define a command that reverses a list nondestructively.

Example

In> reverse(l_IslList) <—-—- DestructiveReverse \
(FlatCopy (1)) ;

Out> True;

In> 1st := {a,b,c,d,e};

Out> {a,b,c,d,e};

In> reverse (lst);

Out> {e,d,c,b,a};

In> 1st;

Oout> {a,b,c,d,e};

3.9. List operations 81

Yacas, Release 1.6.1

Contains (list, expr)
test whether a list contains a certain element

Param list list to examine
Param expr expression to look forin 1ist

This command tests whether 1ist contains the expression expr as an entry. It returns True if it does and
False otherwise. Only the top level of 1ist is examined. The parameter 1ist may also be a general
expression, in that case the top-level operands are tested for the occurrence of expr.

Example

In> Contains({a,b,c,d}, b);
Out> True;

In> Contains ({a,b,c,d}, x);
Out> False;

In> Contains({a,{1,2,3},z}, 1);
Out> False;

In> Contains (axb, b);

Oout> True;

See also:
Find (), Count ()

Find (list, expr)
get the index at which a certain element occurs

Param list the list to examine
Param expr expression to look forin 1ist

This commands returns the index at which the expression expr occurs in 1ist. If expr occurs more than
once, the lowest index is returned. If expr does not occur at all, {-1} is returned.

Example

In> Find({a,b,c,d,e, f}, d);
Oout> 4;

In> Find({1,2,3,2,1}, 2);
out> 2;

In> Find({1,2,3,2,1}, 4);
Out> -1;

See also:
Contains ()

Append (list, expr)
append an entry at the end of a list

Param list list to append expr to
Param expr expression to append to the list
The expression expr is appended at the end of 1ist and the resulting list is returned.

Note that due to the underlying data structure, the time it takes to append an entry at the end of a list grows
linearly with the length of the list, while the time for prepending an entry at the beginning is constant.

Example

In> Append({a,b,c,d}, 1);
out> {a,b,c,d, 1};

82 Chapter 3. Reference Manual

Yacas, Release 1.6.1

See also:
Concat (), : (), DestructiveAppend ()

RemoveDuplicates (list)
remove any duplicates from a list

Param list list to act on

This command removes all duplicate elements from a given list and returns the resulting list. To be precise, the
second occurrence of any entry is deleted, as are the third, the fourth, etc.

Example

In> RemoveDuplicates({1,2,3,2,1});
out> {1,2,3};

In> RemoveDuplicates({a,1,b,1,c,1});
Out> {a,1,b,c};

Swap (list, il,i2)
swap two elements in a list

Param list the list in which a pair of entries should be swapped
Param il, i2 indices of the entries in 1ist to swap

This command swaps the pair of entries with entries 11 and 12 in 1ist. So the element at index i1 ends up
at index 12 and the entry at 12 is put at index i 1. Both indices should be valid to address elements in the list.
Then the updated list is returned. {Swap()} works also on generic arrays.

Example

In> 1lst := {a,b,c,d,e, f};
Out> {a,b,c,d,e, f};

In> Swap(lst, 2, 4);

Out> {a,d,c,b,e, f};

See also:
Replace (), DestructiveReplace(),Array’Create ()

Count (list, expr)
count the number of occurrences of an expression

Param list the list to examine
Param expr expression to look forin 1ist
This command counts the number of times that the expression expr occurs in 1ist and returns this number.

Example

In> 1st := {a,b,c,b,a};
Out> {a,b,c,b,a};

In> Count (lst, a);

out> 2;

In> Count (lst, c);

Out> 1;

In> Count (lst, x);

Oout> 0;

See also:

Length (), Select (), Contains ()

3.9. List operations 83

Yacas, Release 1.6.1

FillList (expr, n)
fill a list with a certain expression

Param expr expression to fill the list with
Param n the length of the list to construct
This command creates a list of length n in which all slots contain the expression expr and returns this list.

Example

In> FillList (x, 5);
out> {x,x,X,x,X};

See also:
MakeVector (), ZeroVector (), RandomIntegerVector ()

Drop (list, n)
Drop (list, -n)
Drop (list, {m, n})
drop a range of elements from a list

Param list list to act on
Param n, m indices

This command removes a sublist of 1ist and returns a list containing the remaining entries. The first calling
sequence drops the first n entries in 1ist. The second form drops the last n entries. The last invocation drops
the elements with indices m through n.

Example

In> 1lst := {a,b,c,d,e, f,g};
out> {a,b,c,d,e, f,g};

In> Drop(lst, 2);

out> {c,d,e, f,g};

In> Drop(lst, -3);

out> {a,b,c,d};

In> Drop(lst, {2,4});

out> {a,e, f,g};

See also:
Take (), Select ()

Take (list, n)
Take (list, -n)
Take (list, {m, n})
take a sublist from a list, dropping the rest

Param list list to act on
Param n, m indices

This command takes a sublist of 11ist, drops the rest, and returns the selected sublist. The first calling sequence
selects the first n entries in 1ist. The second form takes the last n entries. The last invocation selects the sublist
beginning with entry number m and ending with the n-th entry.

Example

In> 1lst := {a,b,c,d,e, f,g};
out> {a,b,c,d,e, f,qg};
In> Take (lst, 2);

84 Chapter 3. Reference Manual

Yacas, Release 1.6.1

out> {a,b};

In> Take(lst, -3);
out> {e, f,g};

In> Take(lst, {2,4});
Out> {b,c,d};

See also:
Drop (), Select ()

Partition (list, n)
partition a list in sublists of equal length

Param list list to partition
Param n length of partitions

This command partitions 11i st into non-overlapping sublists of length n and returns a list of these sublists. The
first n entries in 11ist form the first partition, the entries from position n+1 up to 2n form the second partition,
and so on. If n does not divide the length of 11 st, the remaining entries will be thrown away. If n equals zero,
an empty list is returned.

Example

In> Partition({a,b,c,d,e, f,}, 2);
out> {{a,b}, {c,d},{e,f}};

In> Partition(l .. 11, 3);

out> {{1,2,3},1{4,5,6},{7,8,9}};

See also:
Take (), Permutations ()

Flatten (expression, operator)
flatten expression w.r.t. some operator

Param expression an expression
Param operator string with the contents of an infix operator.

Flatten flattens an expression with respect to a specific operator, converting the result into a list. This is useful
for unnesting an expression. Flatten is typically used in simple simplification schemes.

Example

In> Flatten (atb*c+d, "+");

Out> {a,b=*c,d};

In> Flatten({a, {b,c},d}, "List");
Out> {a,b,c,d};

See also:
UnFlatten()

UnFlatten (list, operator, identity)
inverse operation of Flatten

Param list list of objects the operator is to work on
Param operator infix operator

Param identity identity of the operator

3.9. List operations 85

Yacas, Release 1.6.1

UnFlatten is the inverse operation of Flatten. Given a list, it can be turned into an expression representing for
instance the addition of these elements by calling UnFlatten with + as argument to operator, and 0 as argument
to identity (O is the identity for addition, since a+0=a). For multiplication the identity element would be 1.

Example

In> UnFlatten({a,b,c},"+",0)
out> atb+tc;
In> UnFlatten({a,b,c},"«",1)
out> axbx*c;

See also:
Flatten ()

Type (expr)
return the type of an expression

Param expr expression to examine

The type of the expression expr is represented as a string and returned. So, if expr is a list, the string "List"
is returned. In general, the top-level operator of expr is returned. If the argument expr is an atom, the result
is the empty string " ".

Example

In> Type({a,b,c});
Out> "List";

In> Type (ax (b+tc));
Out> "+";

In> Type(123);
out> "";

See also:
IsAtom(), NrArgs ()

NrArgs (expr)
return number of top-level arguments

Param expr expression to examine

This function evaluates to the number of top-level arguments of the expression expr. The argument expr may
not be an atom, since that would lead to an error.

Example

In> NrArgs(f(a,b,c))
Oout> 3;

In> NrArgs (Sin(x));

Out> 1;

In> NrArgs (ax (b+tc));
Oout> 2;

See also:

Type (), Length ()

VarList (expr)
VarListArith (expr)
VarListSome (expr, list)
list of variables appearing in an expression

Param expr an expression

86 Chapter 3. Reference Manual

Yacas, Release 1.6.1

Param list a list of function atoms

The command { VarList(expr)} returns a list of all variables that appear in the expression {expr}. The expression
is traversed recursively.

The command {VarListSome} looks only at arguments of functions in the {list}. All other functions are con-
sidered opaque (as if they do not contain any variables) and their arguments are not checked. For example,
{VarListSome(a + Sin(b-c))} will return {{a, b, c}}, but {VarListSome (axSin (b—-c), {=*})} will not
look at arguments of {Sin()} and will return {{a,Sin(b-c)}}. Here {Sin(b-c)} is considered a variable be-
cause the function {Sin} does not belong to {list}.

The command { VarListArith} returns a list of all variables that appear arithmetically in the expression {expr}.
This is implemented through {VarListSome} by restricting to the arithmetic functions {+}, {-}, {*}, {/}. Argu-
ments of other functions are not checked.

Note that since the operators {+} and { -} are prefix as well as infix operators, it is currently required to use
{Atom(+)} to obtain the unevaluated atom {+}.

Example

In> VarList (Sin(x))

out> {x};

In> VarList (x+ax*y)

out> {x,a,v};

In> VarListSome (x+ax*y, {Atom("+ ")})
out> {x,ax*y};

In> VarListArith (x+y*Cos (Ln(x)/x))
Oout> {x,y,Cos(Ln(x)/x)}

In> VarListArith(xt+taxy”2-1)

out> {x,a,y"2};

See also:
IsFreeOf (), IsVariable (), FuncList (), HasExpr (), HasFunc ()

FuncList (expr)
list of functions used in an expression

Param expr an expression

The command {FuncList(expr)} returns a list of all function atoms that appear in the expression {expr}. The
expression is recursively traversed.

Example

In> FunclList (x+y*Cos (Ln(x) /%))
Out> {+,«,Cos,/,Ln};

See also:
VarList (), HasExpr (), HasFunc ()

FuncListArith (expr)
list of functions used in an expression

Param expr an expression

FuncListArith is defined through FuncListSome () to look only at arithmetic operations {+}, {-}, {*},

().

Example

In> FuncListArith (x+y*Cos (Ln (x)/x))
out> {+,*,Cos};

3.9. List operations 87

Yacas, Release 1.6.1

See also:

VarList (), HasExpr (), HasFunc ()

FuncListSome (expr, list)

list of functions used in an expression
Param expr an expression
Param list list of function atoms to be considered transparent

The command {FuncListSome(expr, list)} does the same, except it only looks at arguments of a given {list} of
functions. All other functions become opaque (as if they do not contain any other functions). For example,
{FuncListSome(a + Sin(b-c))} will see that the expression has a {—} operation and return {{+,Sin,-}}, but
{FuncListSome(a + Sin(b-c), {+})} will not look at arguments of {Sin()} and will return {{+,Sin}}.

Note that since the operators {+} and { -} are prefix as well as infix operators, it is currently required to use
{Atom(+)} to obtain the unevaluated atom {+}.

Example

In> FuncListSome ({a+bx2,c/d}, {List})
out> {List,+,/};

See also:

VarList (), HasExpr (), HasFunc ()

PrintList (list[, padding])

print list with padding
Param list a list to be printed
Param padding (optional) a string

Prints 1ist and inserts the padding string between each pair of items of the list. Items of the list which are
strings are printed without quotes, unlike Write (). Items of the list which are themselves lists are printed
inside braces { }. If padding is not specified, standard one is used (comma, space).

Example

In> PrintList ({a,b, {c, d}}, ~° .. %)
Out> "* a .. b .. { c .. d} *;

See also:

Write (), WriteString()

Table (body, var, from, to, step)

evaluate while some variable ranges over interval
Param body expression to evaluate multiple times
Param var variable to use as loop variable
Param from initial value for var
Param to final value for var
Param step step size with which var is incremented

This command generates a list of values from body, by assigning variable var values from from up to to,
incrementing step each time. So, the variable var first gets the value from, and the expression body is
evaluated. Then the value from* *+* ‘step is assigned to var and the expression body is again evaluated.
This continues, incrementing var with step on every iteration, until var exceeds t o. At that moment, all the
results are assembled in a list and this list is returned.

88

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Example

In> Table(i!, i, 1, 9, 1);

Out> {1,2,6,24,120,720,5040,40320,362880};
In> Table(i, i, 3, 16, 4);

Out> {3,7,11,15};

In> Table(i~2, i, 10, 1, -1);

Out> {100,81,64,49,36,25,16,9,4,1};

See also:
For(),MapSingle(),..., TableForm()

TableForm (list)
print each entry in a list on a line

Param list list to print

This functions writes out the list {list} in a better readable form, by printing every element in the list on a
separate line.

Example

In> TableForm(Table(i!, i, 1, 10, 1));

1

2

6

24

120

720
5040
40320
362880
3628800
Out> True;

See also:

PrettyForm(), Echo (), Table ()

3.9.1 Destructive operations
DestructiveAppend (list, expr)
destructively append an entry to a list
Param list list to append expr to
Param expr expression to append to the list

This is the destructive counterpart of { Append}. This command yields the same result as the corresponding call
to { Append}, but the original list is modified. So if a variable is bound to 11ist, it will now be bound to the list
with the expression expr inserted.

Destructive commands run faster than their nondestructive counterparts because the latter copy the list before
they alter it.

Example

In> 1lst := {a,b,c,d};
Oout> {a,b,c,d};
In> Append(lst, 1);

3.9. List operations 89

Yacas, Release 1.6.1

Out> {a,b,c,d,1};

In> 1lst

Out> {a,b,c,d};

In> DestructiveAppend (lst, 1);
Oout> {a,b,c,d,1};

In> 1st;

Out> {a,b,c,d,1};

See also:

Concat (), : (), Append ()

DestructiveDelete (list, n)

delete an element destructively from a list
Param list list from which an element should be removed
Param n index of the element to remove

This is the destructive counterpart of {Delete}. This command yields the same result as the corresponding call
to {Delete}, but the original list is modified. So if a variable is bound to “list”, it will now be bound to the list
with the n-th entry removed.

Destructive commands run faster than their nondestructive counterparts because the latter copy the list before
they alter it.

Example

In> 1lst := {a,b,c,d,e, f};

Out> {a,b,c,d,e, f};

In> Delete(lst, 4);

Out> {a,b,c,e, f};

In> 1st;

Out> {a,b,c,d,e, f};

In> DestructiveDelete (1lst, 4);
Out> {a,b,c,e, f};

In> 1st;

Out> {a,b,c,e,f};

See also:

Delete (), DestructivelInsert (), DestructiveReplace ()

Destructivelnsert (list, n, expr)

insert an element destructively into a list
Param list list in which expr should be inserted
Param n index at which to insert
Param expr expression to insertin 1ist

This is the destructive counterpart of Tnsert (). This command yields the same result as the corresponding
callto Insert (), but the original list is modified. So if a variable is bound to 1ist, it will now be bound to
the list with the expression expr inserted.

Destructive commands run faster than their nondestructive counterparts because the latter copy the list before
they alter it.

Example

In> 1lst := {a,b,c,d};
out> {a,b,c,d};

In> Insert (lst, 2, x);

90

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Out> {a,x,b,c,d};

In> 1st;

Out> {a,b,c,d};

In> DestructivelInsert (lst, 2, x);
Oout> {a,x,b,c,d};

In> 1st;

Out> {a,x,b,c,d};

See also:
Insert (), DestructiveDelete (), DestructiveReplace ()

DestructiveReplace (list, n, expr)
replace an entry destructively in a list

Param list list of which an entry should be replaced
Param n index of entry to replace
Param expr expression to replace the n-th entry with

This is the destructive counterpart of Replace (). This command yields the same result as the corresponding
call to Replace (), but the original list is modified. So if a variable is bound to 11 st, it will now be bound to
the list with the expression expr inserted.

Destructive commands run faster than their nondestructive counterparts because the latter copy the list before
they alter it.

Example

In> 1lst := {a,b,c,d,e, f};

Out> {a,b,c,d,e, f};

In> Replace(lst, 4, x);

Oout> {a,b,c,x,e,f};

In> 1st;

Oout> {a,b,c,d,e, f};

In> DestructiveReplace (lst, 4, x);
Out> {a,b,c,x,e,f};

In> 1st;

Out> {a,b,c,x,e,f};

See also:
Replace (), DestructiveDelete (), Destructivelnsert ()

DestructiveReverse (list)
reverse a list destructively

Param list list to reverse

This command reverses 1ist in place, so that the original is destroyed. This means that any variable bound to
1ist will now have an undefined content, and should not be used any more. The reversed list is returned.

Destructive commands are faster than their nondestructive counterparts. Reverse is the non-destructive version
of this function.

Example

In> 1lst := {a,b,c,13,19};

Out> {a,b,c,13,19};

In> revlst := DestructiveReverse (lst);
Out> {19,13,c,b,a};

3.9. List operations 91

Yacas, Release 1.6.1

In> 1st;
out> {a};

See also:

FlatCopy (), Reverse ()

3.9.2 Set operations

Intersection (/1,12)

return the intersection of two lists
Param 11, 12 two lists

The intersection of the lists 11 and 12 is determined and returned. The intersection contains all elements that
occur in both lists. The entries in the result are listed in the same order as in 11. If an expression occurs multiple
times in both 11 and 12, then it will occur the same number of times in the result.

Example

In> Intersection({a,b,c}, {b,c,d});

Oout> {b,c};

In> Intersection({a,e,i,o,u}, {f,o,u,r,t,e,e,n});
Out> {e,o,u};

In> Intersection({1,2,2,3,3,3}, {1,1,2,2,3,3});
Oout> {1,2,2,3,3};

See also:

Union(),Difference ()

Union (1, 12)

return the union of two lists
Param 11, 12 two lists

The union of the lists 11 and 12 is determined and returned. The union contains all elements that occur in one
or both of the lists. In the resulting list, any element will occur only once.

Example

In> Union({a,b,c}, {b,c,d});

Out> {a,b,c,d};

In> Union({a,e,i,o0,u}, {f,o,u,r,t,e,e,n});
Oout> {a,e,i,o,u,f,r,t,n};

In> Union({1,2,2,3,3,3}, {2,2,3,3,4,4});
Out> {1,2,3,4};

See also:

Intersection(),Difference ()

Difference (/1,[2)

return the difference of two lists
Param 11}, {12 two lists

The difference of the lists 11 and 12 is determined and returned. The difference contains all elements that occur
in 11 but not in 12. The order of elements in 11 is preserved. If a certain expression occurs nl times in the
first list and n2 times in the second list, it will occur n1-n2 times in the result if n1 is greater than n2 and not
at all otherwise.

92

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Example

In> Difference({a,b,c}, {b,c,d});

Oout> {a};

In> Difference({a,e,i,o,u}, {f,o,u,r,t,e,e,n});
Out> {a,i};

In> Difference({1,2,2,3,3,3}, {2,2,3,4,4});
out> {1,3,3};

See also:

Intersection (), Union ()

3.9.3 Associative map
Assoc (key, alist)
return element stored in association list
Param key string, key under which element is stored

Param alist association list to examine

The association list alist is searched for an entry stored with index key. If such an entry is found, it is

returned. Otherwise the atom {Empty} is returned.

Association lists are represented as a list of two-entry lists. The first element in the two-entry list is the key, the

second element is the value stored under this key.

The call { Assoc(key, alist)} can (probably more intuitively) be accessed as {alist[key]}.

Example
In> writer := {};
out> {};
In> writer["Iliad "] := " “Homer' °;
Out> True;
In> writer["Henry IV "] := "~ Shakespeare " ;
Out> True;
In> writer["Ulysses '] := "~ “James Joyce ;

Out> True;

In> Assoc (" "Henry IV ', writer);

Out> { “Henry IV' ", " Shakespeare " };
In> Assoc (' "War and Peace' ', writer);
Out> Empty;

See also:
AssocIndices (), [1(), :=(),AssocDelete()

AssocIndices (alist)
return the keys in an association list

Param alist association list to examine

All the keys in the association list alist are assembled in a list and this list is returned.

Example
In> writer := {};
Out> {};
In> writer["Iliad "] := "~ ~Homer °;

Out> True;

3.9. List operations

93

Yacas, Release 1.6.1

In> writer ["Henry IV "] := " ~Shakespeare’ ;
Out> True;
In> writer["Ulysses '] := "~ ~James Joyce ' ;

Out> True;
In> AssocIndices (writer);
Out> {""Iliad’ ", "Henry IV ", "Ulysses "};

See also:

Assoc(),AssocDelete ()

AssocDelete ()

delete an entry in an association list AssocDelete(alist, key) AssocDelete(alist, {key, value})

Param alist association list

Param keykey string, association key

Param value value of the key to be deleted
The key {key} in the association list {alist} is deleted. (The list itself is modified.) If the key was found and
successfully deleted, returns True, otherwise if the given key was not found, the function returns False.

The second, longer form of the function deletes the entry that has both the specified key and the specified value.
It can be used for two purposes:

*to make sure that we are deleting the right value;
«if several values are stored on the same key, to delete the specified entry (see the last example).

At most one entry is deleted.

Example
In> writer := {};
out> {};
In> writer["Iliad’ '] := " “Homer' °;
Out> True;
In> writer ["Henry IV "] := " ~Shakespeare’ ;
Out> True;
In> writer["Ulysses '] := "~ “James Joyce ;
Out> True;
In> AssocDelete(writer, " Henry IV ')
Out> True;
In> AssocDelete(writer, "~ Henry XII ')

Out> False;

In> writer

Out> {{ "Ulysses , "James Joyce "},
{*"Iliad" ", "Homer "}};

In> DestructiveAppend (writer,

{""Ulysses™ ", "~ "Dublin”"});

Out> {{ "Iliad’ ", "Homer "}, { "Ulysses ', “James Joyce '},
{*""Ulysses” ", "Dublin” " }};

In> writer[“Ulysses " 1;

Out> "~ “James Joyce’ ;

In> AssocDelete(writer, { "Ulysses ', ~James Joyce "});
Out> True;

In> writer

Out> {{ "Iliad ", "Homer "}, { "Ulysses °, "Dublin "}};

94

Chapter 3. Reference Manual

Yacas, Release 1.6.1

See also:

Assoc(),AssocIndices ()

3.9.4 Sorting

BubbleSort (list, compare)
sort a list

Param list list to sort
Param compare function used to compare elements of {list}

This command returns {list} after it is sorted using {compare} to compare elements. The function {compare}
should accept two arguments, which will be elements of {list}, and compare them. It should return True if in
the sorted list the second argument should come after the first one, and False otherwise.

The function {BubbleSort} uses the so-called bubble sort algorithm to do the sorting by swapping elements
that are out of order. This algorithm is easy to implement, though it is not particularly fast. The sorting time is
proportional to n? where n is the length of the list.

Example

In> BubbleSort ({4,7,23,53,-2,1}, "<");
out> {-2,1,4,7,23,53};

See also:
HeapSort ()

HeapSort (list, compare)
sort a list

Param list list to sort
Param compare function used to compare elements of {list}

This command returns {list} after it is sorted using {compare} to compare elements. The function {compare}
should accept two arguments, which will be elements of {list}, and compare them. It should return True if in
the sorted list the second argument should come after the first one, and False otherwise.

The function {HeapSort} uses the heapsort algorithm and is much faster for large lists. The sorting time
is proportional to n * In(n) where n is the length of the list.

Example

In> HeapSort({4,7,23,53,-2,1}, ~ >"");
Out> {53,23,7,4,1,-2};

See also:

BubbleSort ()

3.9.5 Stack and queue operations
Push (stack, expr)
add an element on top of a stack
Param stack a list (which serves as the stack container)

Param expr expression to push on stack

3.9. List operations 95

Yacas, Release 1.6.1

This is part of a simple implementation of a stack, internally represented as a list. This command pushes the
expression expr on top of the stack, and returns the stack afterwards.

Example
In> stack := {};
out> {};
In> Push(stack, x);
Oout> {x};

In> Push(stack, x2);
Oout> {x2,x};

In> PopFront (stack);
Oout> x2;

See also:

Pop (), PopFront (), PopBack ()

Pop (stack, n)

remove an element from a stack
Param stack a list (which serves as the stack container)
Param n index of the element to remove

This is part of a simple implementation of a stack, internally represented as a list. This command removes the
element with index n from the stack and returns this element. The top of the stack is represented by the index 1.
Invalid indices, for example indices greater than the number of element on the stack, lead to an error.

Example
In> stack := {};
out> {};
In> Push(stack, x);
Out> {x};

In> Push (stack, x2);
out> {x2,x};

In> Push(stack, x3);
Oout> {x3,x2,x};

In> Pop(stack, 2);
Oout> x2;

In> stack;

out> {x3,x};

See also:

Push (), PopFront (), PopBack ()

PopFront (stack)

remove an element from the top of a stack
Param stack a list (which serves as the stack container)

This is part of a simple implementation of a stack, internally represented as a list. This command removes the
element on the top of the stack and returns it. This is the last element that is pushed onto the stack.

Example
In> stack := {};
out> {};
In> Push (stack, x);
out> {x};

In> Push(stack, x2);

96

Chapter 3. Reference Manual

Yacas, Release 1.6.1

out> {x2,x};

In> Push (stack, x3);
Oout> {x3,x2,x};

In> PopFront (stack);
out> x3;

In> stack;

out> {x2,x};

See also:
Push (), Pop (), PopBack ()

PopBack (stack)
remove an element from the bottom of a stack

Param stack a list (which serves as the stack container)

This is part of a simple implementation of a stack, internally represented as a list. This command removes the
element at the bottom of the stack and returns this element. Of course, the stack should not be empty.

Example
In> stack := {};
out> {};
In> Push(stack, x);
Oout> {x};

In> Push (stack, x2);
out> {x2,x};

In> Push (stack, x3);
Oout> {x3,x2,x};

In> PopBack (stack);

Oout> x;

In> stack;

Out> {x3,x2};

See also:

Push (), Pop (), PopFront ()

Global stack
GlobalPop ()
restore variables using a global stack
GlobalPush ()
save variables using a global stack GlobalPop(var) GlobalPop() GlobalPush(expr)

Param var atom, name of variable to restore from the stack

Param expr expression, value to save on the stack
These functions operate with a global stack, currently implemented as a list that is not accessible externally (it
is protected through {LocalSymbols}).

{GlobalPush} stores a value on the stack. {GlobalPop} removes the last pushed value from the stack. If a
variable name is given, the variable is assigned, otherwise the popped value is returned.

If the global stack is empty, an error message is printed.

Example

3.9. List operations 97

Yacas, Release 1.6.1

In> GlobalPush (3)

Out> 3;

In> GlobalPush (Sin(x))
OQut> Sin (x);

In> GlobalPop (x)

Out> Sin(x);

In> GlobalPop (x)

Oout> 3;

In> x

Out> 3;

See also:

Push (), PopFront ()

3.10 Graphs

Graph (edges)
Graph (vertices, edges)
construct a graph

See also:
> (), <=>()

vertex] —> vertex2
vertex] <=> vertex2
construct an edge

Vertices (g)
return list of graph vertices

See also:
Edges (), Graph ()

Edges (g)
return list of graph edges

See also:
Vertices (), Graph ()

Adjacencylist (g)
adjacency list

Param g graph
Return adjacency list of graph g.
See also:
AdjacencyMatrix (), Graph ()

AdjacencyMatrix(g)
adjacency matrix

Param g graph
Return adjacency matrix of graph g.

See also:

98 Chapter 3. Reference Manual

https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Adjacency_matrix

Yacas, Release 1.6.1

AdjacencyList (), Graph ()

BFS (g,f)
BFS (g, v, f)
traverse graph in breadth-first order

Traverse graph g in breadth-first order, starting from v if provided, or from the first vertex. £ is called for every
visited vertex.

See also:
DF'S (), Graph ()

DFS (g, f)
DFS (g, v, f)
traverse graph in depth-first order

Traverse graph g in depth-first order, starting from v if provided, or from the first vertex. f is called for every
visited vertex.

See also:

BFS (), Graph ()

3.11 Functional operators

These operators can help the user to program in the style of functional programming languages such as Miranda or
Haskell.

item : list
prepend item to list, or concatenate strings

Param item an item to be prepended to a list
Param list a list

Param stringl a string

Param string2 a string

The first form prepends “item” as the first entry to the list “list”. The second form concatenates the strings
“string1” and “‘string2”.

Example

In> a:b:c:{}

Out> {a,b,c};

In> "This":"Is":"A":"String"
Out> "ThisIsAString";

See also:
Concat (), ConcatStrings ()

fn @ arglist
apply a function

Param fn function to apply
Param arglist single argument, or a list of arguments

This function is a shorthand for App1y (). It applies the function “fn” to the argument(s) in “arglist” and returns
the result. The first parameter “fn” can either be a string containing the name of a function or a pure function.

3.11. Functional operators 99

https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Depth-first_search

Yacas, Release 1.6.1

Example

In> "Sin" @ a

OQut> Sin(a);

In> {{a},Sin(a)} Q@ a
Out> Sin(a);

In> "f" @ {a,b}
Out> f(a,b);

See also:

Apply ()

fn /@ list

apply a function to all entries in a list
Param fn function to apply
Param list list of arguments

This function is a shorthand for {MapSingle}. It successively applies the function “fn” to all the entries in “list”
and returns a list contains the results. The parameter “fn” can either be a string containing the name of a function
or a pure function.

Example

In> "Sin" /@ {a,b}

Oout> {Sin(a),Sin(b) };

In> {{a},Sin(a)=*a} /@ {a,b}
Out> {Sin(a)*a,Sin(b)xb};

See also:

MapSingle (), Map (), MapArgs ()

. m

construct a list of consecutive integers
Param n integer. the first entry in the list
Param m integer, the last entry in the list

This command returns the list {{n, n+1, n+2, ..., m}}. If {m} is smaller than {n}, the empty list is returned.
Note that the {..} operator should be surrounded by spaces to keep the parser happy, if “n” is a number. So one
should write “{1 .. 4}” instead of “{1..4}”.

» o«

NFunction (“newname”, “funcname”, {arglist})

make wrapper for numeric functions
Param ‘“newname” name of new function
Param ‘“funcname” name of an existing function
Param arglist symbolic list of arguments

This function will define a function named “newname” with the same arguments as an existing function named
“funcname”. The new function will evaluate and return the expression “funcname(arglist)” only when all items
in the argument list {arglist} are numbers, and return unevaluated otherwise. This can be useful when plotting
functions defined through other Yacas routines that cannot return unevaluated. If the numerical calculation does
not return a number (for example, it might return the atom {nan}, “not a number”, for some arguments), then
the new function will return {Undefined}.

Example

100

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> f(x) := N(Sin(x));

Out> True;

In> NFunction ("f1", "f", {x});
Out> True;

In> fl(a);

out> fl(a);

In> £1(0);

Oout> 0;

Suppose we need to define a complicated function {t(x)} which cannot be evaluated unless {x} is a number:

In> t(x) := If(x<=0.5, 2xx, 2% (1-x));
Out> True;

In> t(0.2);

Oout> 0.4;

In> t(x);

In function "If"

bad argument number 1 (counting from 1)
CommandLine (1) : Invalid argument

Then, we can use { NFunction()} to define a wrapper {t1(x)} around {t(x)} which will not try to evaluate {t(x)}
unless {x} is a number:

In> NFunction("t1", "t", {x})
Out> True;

In> tl(x);

Oout> tl(x);

In> t1(0.2);

out> 0.4;

Now we can plot the function.

In> Plot2D(t1(x), -0.1: 1.1) Out> True;
See also:
MacroRule ()

expr Where x==v
substitute result into expression

Param expr expression to evaluate
Param x variable to set
Param v value to substitute for variable

The operator {Where} fills in values for variables, in its simplest form. It accepts sets of variable/value pairs
defined as varl==vall And var2==val2 And ... and fills in the corresponding values. Lists of value pairs are
also possible, as: {varl==vall And var2==val2, varl==val3 And var2==val4} These values might be obtained
through {Solve}.

Example

In> x"2+y"2 Where x==2

out> y"2+4;

In> x"2+y"2 Where x==2 And y==3

Oout> 13;

In> x"24+4y”"2 Where {x==2 And y==3}

OQut> {13};

In> x"2+y"2 Where {x==2 And y==3,x==4 And y==5}
Out> {13,41};

3.11. Functional operators 101

Yacas, Release 1.6.1

See also:

Solve (), AddTo ()

eql AddTo eq2

add an equation to a set of equations or set of set of equations
Param eq (set of) set of equations

Given two (sets of) sets of equations, the command AddTo combines multiple sets of equations into one. A list
{a,b} means that a is a solution, OR b is a solution. AddTo then acts as a AND operation: (a or b) and (c or d)
=> (aor b) Addto (c or d) => (a and c) or (a and d) or (b and c) or (b and d) This function is useful for adding an
identity to an already existing set of equations. Suppose a solve command returned {a>=0 And x==a,a<0 And
x==-a} from an expression x==Abs(a), then a new identity a==2 could be added as follows: In> a==2 AddTo
{a>=0 And x==a,a<0 And x==-a} Out> {a==2 And a>=0 And x==a,a==2 And a<0 And x== -a}; Passing this
set of set of identities back to solve, solve should recognize that the second one is not a possibility any more,
since a==2 And a<0 can never be true at the same time.

Example

In> {A==2,c==d} AddTo {b==3 And d==2}
Out> {A==2 And b==3 And d==2,c==d

And b==3 And d==2};

In> {A==2,c==d} AddTo {b==3, d==2}
Out> {A==2 And b==3,A==2 And d==2, c==d
And b==3,c==d And d==2};

See also:

Where (), Solve ()

3.12 Control flow functions

MaxEvalDepth (n)

set the maximum evaluation depth
Param n new maximum evaluation depth
Use this command to set the maximum evaluation depth to n. The default value is 1000.

The point of having a maximum evaluation depth is to catch any infinite recursion. For example, after the

definition £ (x) := f (x), evaluating the expression f (x) would call f (x), which would call £ (x), etc.
The interpreter will halt if the maximum evaluation depth is reached. Also indirect recursion, e.g. the pair of
definitions f (x) := g(x) andg(x) := f (x), will be caught.

An example of an infinite recursion, caught because the maximum evaluation depth is reached

In> f(x) := f(x)
out> True;
In> f(x)

Error on line 1 in file [CommandLine]

Max evaluation stack depth reached.

Please use MaxEvalDepth to increase the stack
size as needed.

However, a long calculation may cause the maximum evaluation depth to be reached without the presence of
infinite recursion. The function MaxEvalDepth () is meant for these cases

102

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> 10 # g(0) <-—— 1;

Out> True;

In> 20 # g(n_IsPositivelInteger) <-- \

2 % g(n-1);

Out> True;

In> g(1001);

Error on line 1 in file [CommandLine]

Max evaluation stack depth reached.

Please use MaxEvalDepth to increase the stack

size as needed.

In> MaxEvalDepth (10000);

Out> True;

In> g(1001);

Out> 21430172143725346418968500981200036211228096234
1106721488750077674070210224987224498639675763139171
6255189345835106293650374290571384628087196915514939
7149607869135549648461970842149210124742283755908364
3060929499671638825347975351183310878921541258291423
92955373084335320859663305248773674411336138752;

Hold (expr)
keep expression unevaluated

Param expr expression to keep unevaluated

The expression expr is returned unevaluated. This is useful to prevent the evaluation of a certain expression in
a context in which evaluation normally takes place.

Example

In> Echo({ Hold(1+1), "=", 1+1 });
1+1 = 2
Out> True;

See also:
Eval (), HoldArg (), UnList ()

Eval (expr)
force evaluation of expression

Param expr expression to evaluate

This function explicitly requests an evaluation of the expression expr, and returns the result of this evaluation.

Example
In> a = x;
Out> x;
In> x := 5;
Out> 5;
In> a;
Oout> x;
In> Eval (a);
Out> 5;

The variable a is bound to x, and x is bound to 5. Hence evaluating a will give x. Only when an extra evaluation
of a is requested, the value 5 is returned. Note that the behavior would be different if we had exchanged the
assignments. If the assignment a := x were given while x had the value 5, the variable a would also get the
value 5 because the assignment operator : = () evaluates the right-hand side.

See also:

3.12. Control flow functions 103

Yacas, Release 1.6.1

Hold (), HoldArg (), :={()

While (pred) expr

loop while a condition is met
Param pred predicate deciding whether to keep on looping
Param expr expression to loop over

Keep on evaluating expr while pred evaluates to True. More precisely, While () evaluates the predicate
pred, which should evaluate to either True or False. If the result is True, the expression expr is evaluated
and then the predicate pred is evaluated again. If it is still True, the expressions expr and pred are again
evaluated and so on until pred evaluates to False. At that point, the loop terminates and While () returns
True.

In particular, if pred immediately evaluates to False, the body is never executed. While () is the funda-
mental looping construct on which all other loop commands are based. It is equivalent to the while command
in the programming language C.

Example

In> x := 0;

Qut> 0;

In> While (x! < 1076) \
[Echo({x, x!}); x++; 1;
0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

Out> True;

See also:

Until(),For()

Until (pred) expr

loop until a condition is met
Param pred predicate deciding whether to stop
Param expr expression to loop over

Keep on evaluating expr until pred becomes True. More precisely, Unt i1 () first evaluates the expression
body. Then the predicate pred is evaluated, which should yield either True or False. In the latter case, the
expressions expr and pred are again evaluated and this continues as long as “pred” is False. As soon as
pred yields True, the loop terminates and Unt i1 () returns True.

The main difference with While () isthat Until () always evaluates expr at least once, but While () may
not evaluate it at all. Besides, the meaning of the predicate is reversed: wWhile () stops if pred is False
while Until () stops if pred is True. The command Until (pred) expr; is equivalent to pred;
While (Not pred) body;. In fact, the implementation of Until () is based on the internal command
While (). The Until () command can be comparedtothe do ... while constructin the programming
language C.

Example

104

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> x := 0;

Oout> 0;

In> Until (x! > 1076) \
[Echo({x, x!}); x++; 1;
0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

Out> True;

See also:
While (), For ()

If (pred, then[, else])
branch point

Param pred predicate to test
Param then expression to evaluate if pred is True
Param else expression to evaluate if pred is False

This command implements a branch point. The predicate pred is evaluated, which should result in either True
or False. In the first case, the expression then is evaluated and returned. If the predicate yields False, the
expression el se (if present) is evaluated and returned. If there is no el se branch, the T £ () expression returns
False.

The sign function is defined to be 1 if its argument is positive and -1 if its argument is negative. A possible
implementation is:

In> mysign(x) := If (IsPositiveReal(x), 1, -1);
Oout> True;

In> mysign (Pi);

out> 1;

In> mysign(-2.5);

out> -1;

Note that this will give incorrect results, if x cannot be numerically approximated:

In> mysign(a);
Out> -1;

Hence a better implementation would be:

In> mysign(_x)_IsNumber (N(x)) <-—- If(IsPositiveReal(x), 1, -1);
Out> True;

SystemCall (sir)
pass a command to the shell

Param str the command to call

The command contained in the string st r is executed by the underlying operating system. The return value of
SystemCall () is True or False according to the exit code of the command.

3.12. Control flow functions 105

Yacas, Release 1.6.1

The SystemCall () function is not allowed in the body of the Secure () command.

In a UNIX environment, the command SystemCall ("1s") would print the contents of the current directory:

In> SystemCall("1ls")
AUTHORS
COPYING
ChangeLog
(truncated to save space)
Out> True;

The standard UNIX command test returns success or failure depending on conditions. For example, the
following command will check if a directory exists:

In> SystemCall ("test -d scripts/")
Out> True;

Check that a file exists:

In> SystemCall ("test —f COPYING")

Out> True;

In> SystemCall ("test —f nosuchfile.txt™)
Out> False;

See also:

Secure ()

Function () func(args)
Function (funcname, {args}) body

declare or define a function
Param func(args) function declaration, e.g. £ (x, y)
Param args list of atoms, formal arguments to the function
Param body expression comprising the body of the function
This command can be used to define a new function with named arguments.

The number of arguments of the new function and their names are determined by the list args. If the ellip-
sis . .. follows the last atom in args, a function with a variable number of arguments is declared (using
RuleBaseListed ()). Note that the ellipsis cannot be the only element of args and must be preceded by
an atom.

A function with variable number of arguments can take more arguments than elements in args; in this case, it
obtains its last argument as a list containing all extra arguments.

The short form of the Function () call merely declares a RuleBase () for the new function but does not
define any function body. This is a convenient shorthand for RuleBase () and RuleBaseListed (), when
definitions of the function are to be supplied by rules. If the new function has been already declared with the
same number of arguments (with or without variable arguments), Function () returns false and does nothing.

The second, longer form of the Function () call declares a function and also defines a function body. It is
equivalent to a single rule such as funcname (_argl, _arg2) <-- body. The rule will be declared at
precedence 1025. Any previous rules associated with funcname (with the same arity) will be discarded. More
complicated functions (with more than one body) can be defined by adding more rules.

Example

This will declare a new function with two or more arguments, but define no rules for it. This is equivalent to
RuleBase ("f1", {x, vy, ...}):

106

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> Function() fl(x,y,...);
Out> True;
In> Function() fl(x,vy);

Out> False;

This defines a function FirstOf which returns the first element of a list. Equivalent definitions would be
FirstOf(_list) <—— list[l] orFirstOf(list) := list[1l]:

In> Function("FirstOf", {list}) list[17;
Out> True;

In> FirstOf ({a,b,c});

Oout> a;

The following function will print all arguments to a string:

In> Function("PrintAll", {x, ...}) If(IsList(x), PrintList(x), ToString()Write(x));
Out> True;

In> PrintAll (1) :

Qut> " 1";

In> PrintAll(1,2,3);

Out> " 1 2 3";

See also:
TemplateFunction (), Rule (), RuleBase (), RuleBaseListed (), :=(), Retract ()

Macro () func(args)
Macro (funcname, {args}) body
declare or define a macro

Param func(args) function declaration, e.g. £ (x, v)
Param args list of atoms, formal arguments to the function
Param body expression comprising the body of the function

This does the same as Function (), but for macros. One can define a macro easily with this function, instead
of having to use DefMacroRuleBase ().

Example

The following example defines a looping function

In> Macro ("myfor", {init,pred, inc,body}) [@init;While (@pred) [@body;@inc;];True;];
Out> True;

In> a:=10

Out> 10;

Here this new macro my for is used to loop, using a variable a from the calling environment

In> myfor(i:=1,1i<10,i++,Echo (axi))
10

20

30

40

50

60

70

80

90

Out> True;

3.12. Control flow functions 107

Yacas, Release 1.6.1

In> 1
Out> 10;

See also:

Function (), DefMacroRuleBase ()

For (init, pred, incr) expr

C-style for loop
Param init expression for performing the initialization
Param pred predicate deciding whether to continue the loop
Param incr expression to increment the counter
Param expr expression to loop over

This commands implements a C style for loop. First of all, the expression init is evaluated. Then the
predicate pred is evaluated, which should return True or False. Next, the loop is executed as long as the
predicate yields True. One traversal of the loop consists of the subsequent evaluations of expr, incr, and
pred. Finally, True is returned.

This command is most often used in a form such as For (i=1, i<=10, i++) expr, which evaluates
expr with 1 subsequently setto 1,2, 3,4,5,6,7,8,9, and 10.

The expression For (init, pred, incr) expr is equivalent to init; While (pred) [expr;
incr;].

Example

In> For (i:=1, 1i<=10, i+4+) Echo({i, i!});
1

2

6

24

120

720

5040
40320
362880
10 3628800
Oout> True;

O J o U W N

e

See also:

While(),Until (), ForEach()

ForEach (var, list) expr

loop over all entries in list
Param var looping variable
Param list list of values to assign to var
Param expr expression to evaluate with different values of var

The expression expr is evaluated multiple times. The first time, var has the value of the first element of “list”,
then it gets the value of the second element and so on. ForEach () returns True.

Example

108

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> ForEach(i, {2,3,5,7,11}) Echo({i, i!});

2 2

3 6

5 120
7 5040

11 39916800
Out> True;

See also:

For ()

Apply (fn, arglist)

apply a function to arguments
Param fn function to apply
Param arglist list of arguments

This function applies the function “fn” to the arguments in “arglist” and returns the result. The first parameter
“fn” can either be a string containing the name of a function or a pure function. Pure functions, modeled after
lambda-expressions, have the form “{varlist,body}”, where “varlist” is the list of formal parameters. Upon
application, the formal parameters are assigned the values in “arglist” (the second parameter of { Apply}) and
the “body” is evaluated.

Another way to define a pure function is with the Lambda construct. Here, in stead of passing in
“{varlist,body}”, one can pass in “Lambda(varlist,body)”. Lambda has the advantage that its arguments are
not evaluated (using lists can have undesirable effects because lists are evaluated). Lambda can be used every-
where a pure function is expected, in principle, because the function Apply is the only function dealing with
pure functions. So all places where a pure function can be passed in will also accept Lambda.

An shorthand for { Apply} is provided by the { @} operator.

Example

In> Apply ("+", {5,9});

OQut> 14;

In> Apply ({{x,y}, x-y"2}, {Cos(a), Sin(a)});

Out> Cos (a)-Sin(a)"2;

In> Apply(Lambda({x,y}, x-y"2), {Cos(a), Sin(a)});
Out> Cos(a)-Sin(a) "2

In> Lambda({x,vy}, x-y*2) @ {Cos(a), Sin(a)}

Out> Cos(a)-Sin(a) "2

See also:

Map (), MapSingle (), @()

MapArgs (expr, fn)

apply a function to all top-level arguments
Param expr an expression to work on
Param fn an operation to perform on each argument

Every top-level argument in expr is substituted by the result of applying £n to this argument. Here £n can be
either the name of a function or a pure function (see Apply () for more information on pure functions).

Example

In> MapArgs (f(x,vy,z),"sSin");
Out> f(Sin(x),Sin(y),Sin(z));

3.12. Control flow functions 109

Yacas, Release 1.6.1

In> MapArgS({3,4r5,6}, {{X}IXAz});
Out> {9,16,25,36};

See also:
MapSingle (), Map (), Apply ()

Subst (from, to) expr
perform a substitution

Param from expression to be substituted
Param to expression to substitute for “from”
Param expr expression in which the substitution takes place

This function substitutes every occurrence of from in expr by to. This is a syntactical substitution: only
places where from occurs as a subexpression are affected.

Example

In> Subst(x, Sin(y)) x"2+x+1;
Out> Sin(y)"2+Sin(y)+1;

In> Subst (a+b, x) a+b+c;

Oout> x+c;

In> Subst (b+c, x) atb+c;

Out> atb+c;

The explanation for the last result is that the expression a+b+c is internally stored as (a+b) +c. Hence a+b is
a subexpression, but b+c is not.

See also:
wWithValue (), /: ()

WithValue (var, val, expr)
temporary assignment during an evaluation

Param var variable to assign to
Param val value to be assigned to “var”
Param expr expression to evaluate with “var” equal to “val”

First, the expression “val” is assigned to the variable “var”. Then, the expression “expr” is evaluated and
returned. Finally, the assignment is reversed so that the variable “var” has the same value as it had before
{WithValue} was evaluated.

The second calling sequence assigns the first element in the list of values to the first element in the list of
variables, the second value to the second variable, etc.

Example

In> WithValue (x, 3, x"2+y”"2+1);

out> y~2+10;

In> WithValue ({x,v}, {3,2}, x"2+y"2+1);
out> 14;

See also:
Subst (), /: ()

expression / : patterns
local simplification rules

110 Chapter 3. Reference Manual

Yacas, Release 1.6.1

Param expression an expression
Param patterns a list of patterns

Sometimes you have an expression, and you want to use specific simplification rules on it that are not done by
default. This can be done with the {/:} and the {/::} operators. Suppose we have the expression containing
things such as {Ln(a*b)}, and we want to change these into {Ln(a)+Ln(b)}, the easiest way to do this is using
the {/:} operator, as follows:

In> Sin(x) *Ln (a*xb)

OQut> Sin(x)*Ln(a*b);

In> % /: { Ln(_x*_y) <—- Ln(x)+Ln(y) }
Out> Sin(x)x (Ln(a)+Ln(b));

A whole list of simplification rules can be built up in the list, and they will be applied to the expression on the
left hand side of {/:} .

The forms the patterns can have are one of: :: pattern <- replacement ({pattern,replacement} {pat-
tern,postpredicate,replacement }

Note that for these local rules, {<-} should be used instead of {<—} which would be used in a global rule.

The {/:} operator traverses an expression much as {Subst} does, that is, top down, trying to apply the rules from
the beginning of the list of rules to the end of the list of rules. If the rules cannot be applied to an expression, it
will try subexpressions of that expression and so on.

It might be necessary sometimes to use the {/::} operator, which repeatedly applies the {/:} operator until the
result doesn’t change any more. Caution is required, since rules can contradict each other, which could result in
an infinite loop. To detect this situation, just use /: repeatedly on the expression. The repetitive nature should
become apparent.

Example

In> Sin(u) *Ln(axb) /: {Ln(_x*_y) <- Ln(x)+Ln(y)}
Out> Sin(u) * (Ln(a)+Ln (b)) ;

In> Sin(u)*Ln(a*xb) /:: { a <- 2, b <= 3}

Out> Sin(u) *Ln(6) ;

See also:
Subst ()

TraceStack (expression)
show calling stack after an error occurs

Param expression an expression to evaluate

TraceStack shows the calling stack after an error occurred. It shows the last few items on the stack, not to flood
the screen. These are usually the only items of interest on the stack. This is probably by far the most useful
debugging function in Yacas. It shows the last few things it did just after an error was generated somewhere.

For each stack frame, it shows if the function evaluated was a built-in function or a user-defined function, and
for the user-defined function, the number of the rule it is trying whether it was evaluating the pattern matcher of
the rule, or the body code of the rule.

This functionality is not offered by default because it slows down the evaluation code.

Example

Here is an example of a function calling itself recursively,
causing Yacas to flood its stack:

In> f(x):=f(Sin(x))

Out> True;

3.12. Control flow functions 111

Yacas, Release 1.6.1

In> TraceStack (f(2))

Debug> 982 f (Rule # 0 in body)
Debug> 983 f (Rule # 0 in body)
Debug> 984 f (Rule # 0 in body)
Debug> 985 f (Rule # 0 in body)
Debug> 986 f (Rule # 0 in body)
Debug> 987 : £ (Rule # 0 in body)
Debug> 988 : f (Rule # 0 in body)
Debug> 989 f (Rule # 0 in body)
Debug> 990 f (Rule # 0 in body)
Debug> 991 f (Rule # 0 in body)
Debug> 992 f (Rule # 0 in body)
Debug> 993 f (Rule # 0 in body)
Debug> 994 : f (Rule # 0 in body)
Debug> 995 : f (User function)

Debug> 996 : Sin (Rule # 0 in pattern)
Debug> 997 : IsList (Internal function)

Error on llne 1 in file [CommandLine]

Max evaluation stack depth reached.

Please use MaxEvalDepth to increase the stack
size as needed.

See also:
TraceExp (), TraceRule ()

TraceExp (expr)
evaluate with tracing enabled

Param expr expression to trace

The expression “expr” is evaluated with the tracing facility turned on. This means that every subexpression,
which is evaluated, is shown before and after evaluation. Before evaluation, it is shown in the form { TrEnter(x)},
where {x} denotes the subexpression being evaluated. After the evaluation the line {TrLeave(x,y)} is printed,
where {y} is the result of the evaluation. The indentation shows the nesting level.

Note that this command usually generates huge amounts of output. A more specific form of tracing (eg.
{TraceRule}) is probably more useful for all but very simple expressions.

Example

In> TraceExp (2+3);
TrEnter (2+3);

TrEnter (MathAdd (x,vy));
)
X, 2);

TrEnter
TrLeave

TrEnter (2);
TrLeave (2, 2);
TrEnter()
TrLeave (3, 3);
TrEnter(IsNumber())
TrEnter (x) ;
TrLeave (x, 2);
TrLeave(IsNumber(), True) ;
TrEnter (IsNumber (y));
TrEnter (y);
TrLeave (y, 3);
TrLeave(IsNumber(y) True) ;
TrEnter (True);
TrLeave (True, True);

(

(x

(x

112 Chapter 3. Reference Manual

Yacas, Release 1.6.1

TrEnter (y) ;

TrLeave (y, 3);

TrLeave (MathAdd (x,Vy),5);
TrLeave (2+3, 5);

Out> 5;

See also:
TraceStack (), TraceRule ()

TraceRule (template) expr
turn on tracing for a particular function

Param template template showing the operator to trace
Param expr expression to evaluate with tracing on

The tracing facility is turned on for subexpressions of the form “template”, and the expression “expr” is evalu-
ated. The template “template” is an example of the function to trace on. Specifically, all subexpressions with
the same top-level operator and arity as “template” are shown. The subexpressions are displayed before (indi-
cated with {TrEnter}) and after ({TrLeave}) evaluation. In between, the arguments are shown before and after
evaluation ({ TrArg}). Only functions defined in scripts can be traced.

This is useful for tracing a function that is called from within another function. This way you can see how your
function behaves in the environment it is used in.

Example

In> TraceRule (x+y) 2+3x5+4;
TrEnter (2+3x5+4) ;

TrEnter (2+3%5);

TrArg (2, 2);

TrArg (3%5, 15);

TrLeave (2+3%5, 17);

TrArg (2+3%5, 17);

TrArg (4, 4);

TrLeave (2+3%5+4, 21);

out> 21;

See also:
TraceStack (), TraceExp ()

Time (expr)
measure the time taken by a function

Param expr any expression

The function {Time(expr)} evaluates the expression {expr} and prints the time in seconds needed for the evalu-
ation. The time is printed to the current output stream. The built-in function {GetTime} is used for timing.

The result is the “user time” as reported by the OS, not the real (“wall clock”) time. Therefore, any CPU-
intensive processes running alongside Yacas will not significantly affect the result of {Time}.

Example

In> Time (N (MathLog(1000),40))
0.34 seconds taken
Oout> 6.9077552789821370520539743640530926228033;

See also:

GetTime ()

3.12. Control flow functions 113

Yacas, Release 1.6.1

3.13 Predicates

A predicate is a function that returns a boolean value, i.e. True or False. Predicates are often used in patterns, For
instance, a rule that only holds for a positive integer would use a pattern such as {n_IsPositivelnteger}.

el != e2
test for “not equal”

Param el}, {e2 expressions to be compared

Both expressions are evaluated and compared. If they turn out to be equal, the result is Fa1se. Otherwise, the
result is True. The expression {el !=e2} is equivalent to {Not(el = e2)}.

Example

In> 1 != 2;
Out> True;
In> 1 != 1;
Out> False;

See also:
=()
el = e2
test for equality of expressions
Param el}, {e2 expressions to be compared

Both expressions are evaluated and compared. If they turn out to be equal, the result is True. Otherwise,
the result is False. The function {Equals} does the same. Note that the test is on syntactic equality, not
mathematical equality. Hence even if the result is False, the expressions can still be <i>mathematically</i>
equal; see the examples below. Put otherwise, this function tests whether the two expressions would be displayed
in the same way if they were printed.

Example
In> el := (xt+t1) * (x-1);
out> (x+1)*(x-1);
In> e2 := x"2 - 1;

Oout> x"2-1;

In> el = e2;

Out> False;

In> Expand(el) = e2;
Out> True;

See also:
=(), Equals()

Not expr
logical negation

Param expr a boolean expression

Not returns the logical negation of the argument expr. If {expr} is False it returns True, and if {expr} is
True, {Not expr} returns False. If the argument is neither True nor False, it returns the entire expression
with evaluated arguments.

Example

114 Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> Not True
Out> False;
In> Not False
Out> True;
In> Not (a)
Out> Not a;

See also:
And (), Or ()

al And a2
logical conjunction

Param a}l, ..., {a} boolean values (may evaluate to True or False)

This function returns True if all arguments are true. The {And} operation is “lazy”, i.e. it returns False
as soon as a False argument is found (from left to right). If an argument other than True or False is
encountered a new { And} expression is returned with all arguments that didn’t evaluate to True or False yet.

Example

In> True And False
Out> False;

In> And(True, True)
Out> True;

In> False And a

Out> False;

In> True And a

Out> And(a);

In> And(True, a, True, b)
Oout> b And a;

See also:
Or (), Not ()

al Or a2
logical disjunction
Param al}l, ..., {a} boolean expressions (may evaluate to True or False)
This function returns True if an argument is encountered that is true (scanning from left to right). The {Or}
operation is “lazy”, i.e. it returns True as soon as a True argument is found (from left to right). If an argument

other than True or False is encountered, an unevaluated {Or} expression is returned with all arguments that
didn’t evaluate to True or False yet.

Example

In> True Or False
Oout> True;

In> False Or a

Out> Or(a);

In> Or (False,a,b, True)
Out> True;

See also:
And (), Not ()

IsFreeOf (var, expr)
test whether expression depends on variable

3.13. Predicates 115

Yacas, Release 1.6.1

Param expr expression to test
Param var variable to look for in “expr”

This function checks whether the expression “expr” (after being evaluated) depends on the variable “var”. It
returns False if this is the case and True otherwise. The second form test whether the expression depends on
<i>any</i> of the variables named in the list. The result is True if none of the variables appear in the expression
and False otherwise.

Example

In> IsFreeOf (x, Sin(x));

Out> False;

In> IsFreeOf(y, Sin(x));

Out> True;

In> IsFreeOf(x, D(x) a*xtb);

Out> True;

In> IsFreeOf ({x,v}, Sin(x));

Out> False;

The third command returns :data: True because the

expression {D(x) a*x+b} evaluates to {a}, which does not depend on {x}.

See also:

Contains ()

IsZeroVector (list)

test whether list contains only zeroes
Param list list to compare against the zero vector

The only argument given to {IsZeroVector} should be a list. The result is True if the list contains only zeroes
and False otherwise.

Example

In> IsZeroVector ({0, x, 0});

Out> False;

In> IsZeroVector ({x-x, 1 - D(x) x});
Out> True;

See also:

IsList (), ZeroVector ()

IsNonObject (expr)

test whether argument is not an {Object()}
Param expr the expression to examine

This function returns True if “expr” is not of the form {Object(...)} and False otherwise.

IsEven (n)

test for an even integer

Param n integer to test

99

This function tests whether the integer “n” is even. An integer is even if it is divisible by two. Hence the even
numbers are 0, 2, 4, 6, 8, 10, etc., and -2, -4, -6, -8, -10, etc.

Example

In> IsEven (4);
Out> True;

116

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> IsEven(-1);
Out> False;

See also:
IsOdd (), IsInteger ()

IsOdd (n)
test for an odd integer

Param n integer to test

[T3e L]

This function tests whether the integer “n” is odd. An integer is odd if it is not divisible by two. Hence the odd
numbers are 1, 3, 5,7, 9, etc., and -1, -3, -5, -7, -9, etc.

Example

In> IsOdd(4);
Out> False;
In> IsOdd(-1);
Out> True;

See also:
IsEven (), IsInteger()

IsEvenFunction (expression, variable)
Return true if function is an even function, False otherwise

Param expression mathematical expression
Param variable variable

These functions return True if Yacas can determine that the function is even or odd respectively. Even functions
are defined to be functions that have the property: $$ f(x) = f(-x) $$ And odd functions have the property: $$
f(x) = -f(-x) 3 {Sin(x)} is an example of an odd function, and {Cos(x)} is an example of an even function.

Note: One can decompose a function into an even and an odd part $$ f(x) = f_{even}(x) + f_{odd}(x) $$ where

$$ f_{even}(x) = (f(x)+{(-x))/2 $$ and $$ f_{odd }(x) = (f(x)-f(-x))/2 $$

IsFunction (expr)
test for a composite object

Param expr expression to test

This function tests whether “expr” is a composite object, i.e. not an atom. This includes not only obvious
functions such as {f(x)}, but also expressions such as x+5 and lists.

Example

In> IsFunction (x+5);
Out> True;

In> IsFunction (x);
Out> False;

See also:
IsAtom (), IsList (), Type ()

IsAtom (expr)
test for an atom

Param expr expression to test

3.13. Predicates 117

Yacas, Release 1.6.1

This function tests whether “expr” is an atom. Numbers, strings, and variables are all atoms.

Example

In> IsAtom(x+5);
Out> False;

In> IsAtom(5);
Out> True;

See also:
IsFunction (), IsNumber (), IsString()

IsString (expr)
test for an string

Param expr expression to test
This function tests whether “expr” is a string. A string is a text within quotes, e.g. {“duh”}.

Example

In> IsString("duh");
Out> True;

In> IsString(duh);
Out> False;

See also:
IsAtom (), IsNumber ()

IsNumber (expr)
test for a number

Param expr expression to test

This function tests whether “expr” is a number. There are two kinds of numbers, integers (e.g. 6) and reals (e.g.
-2.75 or 6.0). Note that a complex number is represented by the { Complex} function, so {IsNumber} will return
False.

Example

In> IsNumber (6);
Out> True;

In> IsNumber (3.25);
Out> True;

In> IsNumber (I);
Out> False;

In> IsNumber ("duh");
Out> False;

See also:

IsAtom (), IsString(), IsInteger(), IsPositiveNumber (), IsNegativeNumber (),
Complex ()

IsList (expr)
test for a list

Param expr expression to test
This function tests whether “expr” is a list. A list is a sequence between curly braces, e.g. {{2, 3,5}}.

Example

118 Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> IsList ({2,3,5});
Out> True;

In> IsList (2+3+5);
Out> False;

See also:

IsFunction()

IsNumericList ({list})

test for a list of numbers
Param {list} alist

Returns True when called on a list of numbers or expressions that evaluate to numbers using {N()}. Returns
False otherwise.

See also:

N (), IsNumber ()

IsBound (var)

test for a bound variable
Param var variable to test

This function tests whether the variable “var” is bound, i.e. whether it has been assigned a value. The argument
“var” is not evaluated.

Example

In> IsBound(x);
Out> False;

In> x := 5;
Out> 5;

In> IsBound(x);
Out> True;

See also:

IsAtom ()

IsBoolean (expression)

test for a Boolean value
Param expression an expression

IsBoolean returns True if the argument is of a boolean type. This means it has to be either True, False, or an
expression involving functions that return a boolean result, e.g. {=}, {>}, {<}, {>=}, {<=}, {!=}, {And}, {Not},
{Or}.

Example

In> IsBoolean(a)

Out> False;

In> IsBoolean (True)
Oout> True;

In> IsBoolean(a And b)
Out> True;

See also:

True (), False ()

3.13. Predicates 119

Yacas, Release 1.6.1

IsNegativeNumber (n)
test for a negative number

Param n number to test

{IsNegativeNumber(n)} evaluates to True if n is (strictly) negative, i.e. if $n<0$. If {n} is not a number, the
functions return False.

Example

In> IsNegativeNumber (6);
Out> False;

In> IsNegativeNumber (-2.5);
Out> True;

See also:

IsNumber (), IsPositiveNumber (), IsNotZero (), IsNegativelInteger (),
IsNegativeReal ()

IsNegativeInteger (n)
test for a negative integer

Param n integer to test

This function tests whether the integer {n} is (strictly) negative. The negative integers are -1, -2, -3, -4, -5, etc.
If {n} is not a integer, the function returns False.

Example

In> IsNegativeInteger (31);
Out> False;
In> IsNegativelnteger (-2);
Out> True;

See also:
IsPositiveInteger (), IsNonZeroInteger (), IsNegativeNumber ()

IsPositiveNumber (n)
test for a positive number

Param n number to test

{IsPositiveNumber(n)} evaluates to True if n is (strictly) positive, i.e. if $n>0$. If {n} is not a number the
function returns False.

Example

In> IsPositiveNumber (6);
Out> True;

In> IsPositiveNumber (-2.5);
Out> False;

See also:

IsNumber (), IsNegativeNumber (), IsNotZero (), IsPositiveInteger (),
IsPositiveReal ()

IsPositiveInteger (n)
test for a positive integer

Param n integer to test

120 Chapter 3. Reference Manual

Yacas, Release 1.6.1

This function tests whether the integer {n} is (strictly) positive. The positive integers are 1, 2, 3, 4, 5, etc. If {n}
is not a integer, the function returns False.

Example

In> IsPositivelInteger (31);
Oout> True;
In> IsPositivelnteger (-2);
Out> False;

See also:
IsNegativelnteger (), IsNonZeroInteger (), IsPositiveNumber ()

IsNotZero (n)
test for a nonzero number

Param n number to test
{IsNotZero(n)} evaluates to True if {n} is not zero. In case {n} is not a number, the function returns False.

Example

In> IsNotZero(3.25);
Out> True;

In> IsNotZero(0);
Out> False;

See also:
IsNumber (), IsPositiveNumber (), IsNegativeNumber (), IsNonZeroInteger ()

IsNonZeroInteger (n)
test for a nonzero integer

Param n integer to test
This function tests whether the integer {n} is not zero. If {n} is not an integer, the result is False.

Example

In> IsNonZeroInteger (0)
Out> False;
In> IsNonZerolInteger (—2)
Out> True;

See also:
IsPositiveInteger (), IsNegativelnteger (), IsNotZero ()

IsInfinity (expr)
test for an infinity

Param expr expression to test
This function tests whether {expr} is an infinity. This is only the case if {expr} is either {Infinity} or {-Infinity}.

Example

In> IsInfinity(1071000);
Out> False;

In> IsInfinity (-Infinity);
Out> True;

3.13. Predicates 121

Yacas, Release 1.6.1

See also:
Integer ()

IsPositiveReal (expr)
test for a numerically positive value

Param expr expression to test

This function tries to approximate “expr’” numerically. It returns True if this approximation is positive. In case
no approximation can be found, the function returns False. Note that round-off errors may cause incorrect
results.

Example

In> IsPositiveReal (Sin(1l)-3/4);

Out> True;

In> IsPositiveReal (Sin(l)-6/7);

Out> False;

In> IsPositiveReal (Exp(x));

Out> False;

The last result is because {Exp(x)} cannot be
numerically approximated if {x} is not known. Hence
Yacas can not determine the sign of this expression.

See also:
IsNegativeReal (), IsPositiveNumber (), N()

IsNegativeReal (expr)
test for a numerically negative value

Param expr expression to test

This function tries to approximate {expr} numerically. It returns True if this approximation is negative. In case
no approximation can be found, the function returns False. Note that round-off errors may cause incorrect
results.

Example

In> IsNegativeReal (Sin(1)-3/4);

Out> False;

In> IsNegativeReal (Sin(1l)-6/7);

Out> True;

In> IsNegativeReal (Exp(x));

Out> False;

The last result is because {Exp(x)} cannot be
numerically approximated if {x} is not known. Hence
Yacas can not determine the sign of this expression.

See also:
IsPositiveReal (), IsNegativeNumber (), N()

IsConstant (expr)
test for a constant

Param expr some expression

{IsConstant} returns True if the expression is some constant or a function with constant arguments. It does
this by checking that no variables are referenced in the expression. {Pi} is considered a constant.

Example

122 Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> IsConstant (Cos (x))
Out> False;

In> IsConstant (Cos(2))
Out> True;

In> IsConstant (Cos (2+x))
Out> False;

See also:
IsNumber (), IsInteger (), VarList ()
IsGaussianInteger (z)

test for a Gaussian integer
Param z a complex or real number

This function returns True if the argument is a Gaussian integer and F'a I se otherwise. A Gaussian integer is a
generalization of integers into the complex plane. A complex number $a+b*I$ is a Gaussian integer if and only
if a and b are integers.

Example

In> IsGaussianInteger (5)

Out> True;

In> IsGaussianInteger (5+6+1I)
Out> True;

In> IsGaussianInteger (1+2.5%1)
Out> False;

See also:
IsGaussianUnit (), IsGaussianPrime ()

MatchLinear (x, expr)
match an expression to a polynomial of degree one in a variable

Param x variable to express the univariate polynomial in
Param expr expression to match

{MatchLinear} tries to match an expression to a linear (degree less than two) polynomial. The function returns
True if it could match, and it stores the resulting coefficients in the variables “{a}” and “{b}” as a side effect.
The function calling this predicate should declare local variables “{a}” and “{b}” for this purpose. {MatchLin-
ear} tries to match to constant coefficients which don’t depend on the variable passed in, trying to find a form
“{a*x+b}” with “{a}” and “{b}” not depending on {x} if {x} is given as the variable.

Example

In> MatchLinear (x, (R+1)*x+ (T-1))
Out> True;

In> {a,b};

Out> {R+1,T-1};

In> MatchLinear (x,Sin (x) *x+ (T-1))
Out> False;

See also:
Integrate ()

HasExpr (expr, x)
check for expression containing a subexpression

3.13. Predicates 123

Yacas, Release 1.6.1

Param expr an expression
Param x a subexpression to be found
Param list list of function atoms to be considered “transparent”

The command {HasExpr} returns True if the expression {expr} contains a literal subexpression {x}. The
expression is recursively traversed. The command {HasExprSome} does the same, except it only looks at argu-
ments of a given {list} of functions. All other functions become “opaque” (as if they do not contain anything).
{HasExprArith} is defined through {HasExprSome} to look only at arithmetic operations {+}, {-}, {*}, {/}.
Note that since the operators “{+}” and “{-}” are prefix as well as infix operators, it is currently required to use
{Atom(“+”)} to obtain the unevaluated atom “{+}”.

Example

In> HasExpr (x+y*Cos(Ln(z)/z), z)

Out> True;

In> HasExpr (x+y+*Cos(Ln(z)/z), Ln(z))
Out> True;

In> HasExpr (x+y*Cos (Ln(z)/z), z/Ln(z))
Out> False;

In> HasExprArith (x+y+Cos (Ln(x)/x), z)
Out> False;

In> HasExprSome ({atbx2,c/d},c/d, {List})
Out> True;

In> HasExprSome ({a+b*2,c/d},c, {List})
Out> False;

See also:
FuncList (), VarList (), HasFunc /()

HasFunc (expr, func)
check for expression containing a function

Param expr an expression
Param func a function atom to be found
Param list list of function atoms to be considered “transparent”

The command {HasFunc} returns True if the expression {expr} contains a function {func}. The expression
is recursively traversed. The command {HasFuncSome} does the same, except it only looks at arguments of a
given {list} of functions. Arguments of all other functions become “opaque” (as if they do not contain anything).
{HasFuncArith} is defined through {HasFuncSome} to look only at arithmetic operations {+}, {-}, {*}, {/}.
Note that since the operators “{+}” and “{-}" are prefix as well as infix operators, it is currently required to use
{Atom(“+”)} to obtain the unevaluated atom “{+}”.

Example
In> HasFunc (x+y*Cos(Ln(z)/z), Ln)
Oout> True;
In> HasFunc (x+y*Cos (Ln(z) /z) Sin)
Out> False;
In> HasFuncArith (x+y*Cos (Ln(x)/x), Cos)

Out> True;

In> HasFuncArith (x+y*Cos (Ln(x)/x), Ln)
Out> False;

In> HasFuncSome ({a+bx2,c/d},/, {List})
Out> True;

In> HasFuncSome ({a+bx2,c/d}, *, {List})
Out> False;

124 Chapter 3. Reference Manual

Yacas, Release 1.6.1

See also:

FuncList (), VarList (), HasExpr ()

3.14 Constants

3.14.1 Yacas-specific constants

%
previous result
% evaluates to the previous result on the command line. % is a global variable that is bound to the previous result
from the command line. Using % will evaluate the previous result. (This uses the functionality offered by the
{SetGlobalLazy Variable} command).
Typical examples are Simplify (%) and PrettyForm (%) to simplify and show the result in a nice form
respectively.
Example
In> Taylor(x,0,5)Sin(x)
Out> x-x"3/6+x75/120;
In> PrettyForm (%)
3 5
X X
X - —— + ———
6 120
See also:
SetGlobalLazyVariable ()
EndOfFile

end-of-file marker

End of file marker when reading from file. If a file contains the expression {EndOfFile;} the operation will stop
reading the file at that point.

3.14.2 Mathematical constants

True
False
boolean constants representing true and false

True and False are typically a result of boolean expressions such as 2 < 3 or True And False.
See also:
And (), Or (), Not ()

Infinity
constant representing mathematical infinity

Infinity represents infinitely large values. It can be the result of certain calculations.

Note that for most analytic functions yacas understands Tnfinity as a positive number. Thus Infinity=2
will return Infinity,and a < Infinity will evaluate to True.

3.14. Constants 125

Yacas, Release 1.6.1

Example

In> 2xInfinity
Out> Infinity;
In> 2<Infinity
Out> True;

mathematical constant,
The constant represents the number 7. It is available symbolically as Pi or numerically through N (Pi).
This is a cached constant which is recalculated only when precision is increased.

Example

In> Sin(3+Pi/2)

Out> -1;

In> Pi+1

OQut> Pi+1;

In> N(P1)

Out> 3.14159265358979323846;

See also:
Sin(),Cos(),N(), CachedConstant ()

Undefined
constant signifying an undefined result

Undefined is a token that can be returned by a function when it considers its input to be invalid or when no
meaningful answer can be given. The result is then undefined.

Most functions also return Unde 1 ned when evaluated on it.

Example

In> 2+Infinity

Out> Infinity;

In> OxInfinity

Out> Undefined;

In> Sin(Infinity);

Out> Undefined;

In> Undefined+2+Exp (Undefined);
Out> Undefined;

See also:
Infinity

GoldenRatio
the golden ratio

The constant represents the golden ratio

C1+V5

5 = 1.6180339887 . ..

¢ :

It is available symbolically as GoldenRat io or numerically through N (GoldenRatio).
This is a cached constant which is recalculated only when precision is increased.

Example

126 Chapter 3. Reference Manual

https://en.wikipedia.org/wiki/Pi
https://en.wikipedia.org/wiki/Golden_ratio

Yacas, Release 1.6.1

In> x:=GoldenRatio - 1
Out> GoldenRatio-1;

In> N(x)

Out> 0.6180339887;

In> N(1/GoldenRatio)

Out> 0.6180339887;

In> V(N (GoldenRatio, 20));

CachedConstant: Info: constant GoldenRatio is
being recalculated at precision 20
Out> 1.6180339887498948482;

See also:
N (), CachedConstant ()

Catalan
Catalan’s constant

The constant represents the Catalan’s constant

—1"
G:=p(2) = T;) Gy 1) = 09159655941 ...

It is available symbolically as Catalan or numerically through N (Catalan).
This is a cached constant which is recalculated only when precision is increased.

Example

In> N (Catalan)

Out> 0.9159655941;
In> DirichletBeta(2)
Out> Catalan;

In> V(N (Catalan, 20))

CachedConstant: Info: constant Catalan is
being recalculated at precision 20
Out> 0.91596559417721901505;

See also:
N (), CachedConstant ()

gamma
Euler—-Mascheroni constant ~y

The constant represents the Euler—Mascheroni constant

= 0.5772156649 . ..

| =

n—oo

n
v:= lim | —In(n) + Z
k=1

It is available symbolically as gamma or numerically through N (gamma) .

This is a cached constant which is recalculated only when precision is increased.

Note: Euler’s I'(z) function is the capitalized Gamma () in yacas.

Example

3.14. Constants 127

https://en.wikipedia.org/wiki/Catalan%27s_constant
https://en.wikipedia.org/wiki/Euler\T1\textendash Mascheroni_constant

Yacas, Release 1.6.1

In> gamma+Pi

Out> gamma+Pi;

In> N(gamma+Pi)
Out> 3.7188083184;
In> V(N (gamma, 20))

CachedConstant: Info: constant gamma is being
recalculated at precision 20

GammaConstNum: Info: used 56 iterations at
working precision 24

Out> 0.57721566490153286061;

See

also:

Gamma (), N (), CachedConstant ()

3.15 Variables

var

1= expr

var[i] : = expr
varlist : = exprlist

fn

1= expr

assign a variable or a list; define a function
var :=expr {varl, var2, ...} := {exprl, expr2, ...} var[i] := expr fn(argl, arg2, ...) := expr
Param var atom, variable which should be assigned
Param expr expression to assign to the variable or body of function
Param i index (can be integer or string)
Param fn atom, name of a new function to define
Param argl, arg2 atoms, names of arguments of the new function {fn}

The := () operator can be used in a number of ways. In all cases, some sort of assignment or definition takes
place. The first form is the most basic one. It evaluates the expression on the right-hand side and assigns it to
the variable named on the left-hand side. The left-hand side is not evaluated. The evaluated expression is also
returned. The second form is a small extension, which allows one to do multiple assignments. The first entry in
the list on the right-hand side is assigned to the first variable mentioned in the left-hand side, the second entry
on the right-hand side to the second variable on the left-hand side, etc. The list on the right-hand side must have
at least as many entries as the list on the left-hand side. Any excess entries are silently ignored. The result of
the expression is the list of values that have been assigned. The third form allows one to change an entry in the
list. If the index “i” is an integer, the “i”-th entry in the list is changed to the expression on the right-hand side.
It is assumed that the length of the list is at least “i”. If the index “i” is a string, then “var” is considered to be
an associative list (sometimes called hash table), and the key “i” is paired with the value “exp”. In both cases,
the right-hand side is evaluated before the assignment and the result of the assignment is True. The last form
defines a function. For example, the assignment {fn(x) := x"2} removes any rules previously associated with
{fn(x)} and defines the rule {fn(_x) <— x"2}. Note that the left-hand side may take a different form if {fn} is
defined to be a prefix, infix or bodied function. This case is special since the right-hand side is not evaluated
immediately, but only when the function {fn} is used. If this takes time, it may be better to force an immediate
evaluation with {Eval} (see the last example). If the expression on the right hand side begins with {Eval()}, then
it <i>will</i> be evaluated before defining the new function. A variant of the function definition can be used to
make a function accepting a variable number of arguments. The last argument

Simple assignment:

128

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> a := Sin(x) + 3;
Out> Sin(x)+3;
In> a;

Out> Sin(x)+3;

Multiple assignments:

In> {a,b,c} := {1,2,3};
Oout> {1,2,3};

In> a;

Oout> 1;

In> b+t+c;

Out> 5;

Assignment to a list:

In> xs := { 1,2,3,4,5 };
Oout> {1,2,3,4,5};

In> xs[3] := 15;

Out> True;

In> xsj;

Out> {1,2,15,4,5};

Building an associative list:

In> alist := {};

out> {};

In> alist["cherry"] := "red";
out> True;

In> alist(["banana"] := "yellow";

Out> True;

In> alist["cherry"];

Out> "red";

In> alist;

Oout> {{"banana","yellow"}, {"cherry","red"}};

Defining a function:

In> f(x) := x"2;
Out> True;

In> £(3);

Oout> 9;

In> f(Sin(a));
Out> Sin(a)"2;

Defining a function with variable number of arguments:

In> f(x, ...) := If(IsList(x),Sum(x),x);
Out> True;

In> f£(2);

out> 2;

In> £(1,2,3);

Oout> 6;

Defining a new infix operator:

In> Infix("*&+",10);

Oout> True;

In> x1 *x&*x x2 := x1/x2 + x2/x1;
Out> True;

3.15. Variables

129

Yacas, Release 1.6.1

In> Sin(a) *&x Cos(a);

Out> Tan(1l)+Cos (1) /Sin(1);

In> Clear (a);

Out> True;

In> Sin(a) *&* Exp(a);

Out> Sin(a)/Exp(a)+Exp(a)/Sin(a);

In the following example, it may take some time to compute the Taylor expansion. This has to be done every
time the function {f} is called:

In> f(a) := Taylor(x,0,25) Sin(x);

Out> True;

In> f£(1);

Oout> x-x"3/6+x"5/120-x"7/5040+%x"9/362880—-
x711/39916800+x"713/6227020800-x"15/
1307674368000+x717/355687428096000-x"19/
121645100408832000+x721/51090942171709440000
-x723/25852016738884976640000+x"25
/15511210043330985984000000;

In> f£(2);

Oout> x-x"3/6+x"5/120-x~7/5040+x"9/362880—
x711/39916800+x713/6227020800-x"15
/1307674368000+x"17/355687428096000-x"19/
121645100408832000+x721/51090942171709440000
-x"23/25852016738884976640000+x"25/
15511210043330985984000000;

The remedy is to evaluate the Taylor expansion immediately. Now the expansion is computed only once:

In> f(a) := Eval(Taylor(x,0,25) Sin(x));
Out> True;

In> f£(1);

out> x-x"3/6+x"5/120-x"7/5040+%x79/362880—-
x"711/39916800+x"13/6227020800-x"15/
1307674368000+x717/355687428096000-x"19/
121645100408832000+x721/51090942171709440000
-x"23/25852016738884976640000+x"25
/15511210043330985984000000;

In> f£(2);

Oout> x-x"3/6+x"5/120-x"7/5040+x"~9/362880—
x711/39916800+x713/6227020800-x"15
/1307674368000+x"17/355687428096000-x"19/
121645100408832000+x721/51090942171709440000
-x723/25852016738884976640000+x"25/
15511210043330985984000000;

See also:

Set (),Clear (), [1(),Rule(), Infix(),Eval (), Function/()

Set (var, exp)

assignment
Param var variable which should be assigned
Param exp expression to assign to the variable

The expression “exp” is evaluated and assigned it to the variable named “var”. The first argument is not eval-
uated. The value True is returned. The statement {Set(var, exp)} is equivalent to {var := exp}, but the {:=}
operator has more uses, e.g. changing individual entries in a list.

130

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Example

In> Set (a, Sin(x)+3);
Oout> True;

In> a;

Out> Sin(x)+3;

See also:
Clear (), :=()

Clear (var,...)
undo an assignment

Param var name of the variable to be cleared

All assignments made to the variables listed as arguments are undone. From now on, all these variables remain
unevaluated (until a subsequent assignment is made). The result of the expression is True.

Example

In> a := 5;
Out> 5;

In> a”2;

out> 25;

In> Clear(a);
out> True;
In> a”2;

out> a”2;

See also:
Set (), :=()

Local (var,...)
declare new local variables

Param var name of the variable to be declared as local

All variables in the argument list are declared as local variables. The arguments are not evaluated. The value
True is returned. By default, all variables in Yacas are global. This means that the variable has the same value
everywhere. But sometimes it is useful to have a private copy of some variable, either to prevent the outside
world from changing it or to prevent accidental changes to the outside world. This can be achieved by declaring
the variable local. Now only expressions within the Prog () block (or its syntactic equivalent, the [] block) can
access and change it. Functions called within this block cannot access the local copy unless this is specifically
allowed with UnFence ().

Example

In> a := 3;

Oout> 3;

In> [a := 4; a; 1;

Oout> 4;

In> a;

Oout> 4;

In> [Local(a); a := 5; a; 1;
Oout> 5;

In> a;

out> 4;

In the first block, a is not declared local and hence defaults to be a global variable. Indeed, changing the variable
inside the block also changes the value of a outside the block. However, in the second block a is defined to be
local and now the value outside the block stays the same, even though a is assigned the value 5 inside the block.

3.15. Variables 131

Yacas, Release 1.6.1

var++

See also:

LocalSymbols (), Prog(), []1 (), UnFence/()

increment variable
Param var variable to increment

The variable with name var is incremented, i.e. the number 1 is added to it. The expression x++ is equivalent to
the assignment x := x + 1,except that the assignment returns the new value of x while x++ always returns
True. In this respect, Yacas’ ++ differs from the corresponding operator in the programming language C.

var—-—

Example
In> x := 5;
Out> 5;
In> x++;
Out> True;
In> x;
Oout> 6;
See also:
(), :=()

decrement variable
Param var variable to decrement

The variable with name var is decremented, i.e. the number 1 is subtracted from it. The expression x—- is
equivalent to the assignment x := x — 1, except that the assignment returns the new value of x while x——
always returns True. In this respect, Yacas’ —— differs from the corresponding operator in the programming
language C.

Example

In> x := 5;
Out> 5;

In> x——;
Oout> True;
In> x;

Oout> 4;

See also:

++ (), :=()

Object (“pred”, expr)

create an incomplete type
Param pred name of the predicate to apply
Param expr expression on which pred should be applied

This function returns “obj” as soon as “pred” returns True when applied on “obj”. This is used to declare
so-called incomplete types.

Example

In> a := Object ("IsNumber", x);
Out> Object ("IsNumber", x);

In> Eval (a);

Out> Object ("IsNumber", x);

132

Chapter 3. Reference Manual

Yacas, Release 1.6.1

In> x := 5;
Out> 5;
In> Eval (a);
Out> 5;
See also:

IsNonObject ()

SetGlobalLazyVariable (var, value)
global variable is to be evaluated lazily

Param var variable (held argument)
Param value value to be set to (evaluated before it is assigned)

SetGlobalLazyVariable () enforces that a global variable will re-evaluate when used. This functionality
doesn’t survive if Clear (var) is called afterwards. Places where this is used include the global variables %
and I. The use of lazy in the name stems from the concept of lazy evaluation. The object the global variable
is bound to will only be evaluated when called. The {SetGlobalLazyVariable} property only holds once: after
that, the result of evaluation is stored in the global variable, and it won’t be reevaluated again:

In> SetGloballazyVariable (a,Hold(Taylor (x,0,30)Sin(x)))
Out> True

Then the first time you call a it evaluates Taylor (...) and assigns the result to a. The next time you call
a it immediately returns the result. SetGlobalLazyVariable () is called for $ each time % changes. The
following example demonstrates the sequence of execution:

In> SetGloballazyVariable (test,Hold (Write("hello™)))
Out> True

The text “hello” is not written out to screen yet. However, evaluating the variable test forces the expression
to be evaluated:

In> test = "hello"
Oout> True

Example

In> Set (a,Hold (2+3))

Out> True

In> a

Out> 2+3

In> SetGloballazyVariable (a,Hold(2+3))
Out> True

In> a

Out> 5

See also:
Set (), Clear (), Local (),%(),I()

UniqueConstant ()
create a unique identifier

This function returns a unique constant atom each time you call it. The atom starts with a C character, and a
unique number is appended to it.

Example

3.15. Variables 133

Yacas, Release 1.6.1

In> UniqueConstant ()
Out> C9

In> UniqueConstant ()
Out> C10

See also:

LocalSymbols ()

LocalSymbols (varl, var2,...) expr

create unique local symbols with given prefix
Param varl, var2, .. atoms, symbols to be made local
Param expr expression to execute

Given the symbols passed as the first arguments to LocalSymbols (), a set of unique local symbols will be
created, typically of the form $<symbol><number>, where symbol was the symbol entered by the user,
and number is a unique number. This scheme is used to ensure that a generated symbol can not accidentally
be entered by a user. This is useful in cases where a guaranteed free variable is needed, for example, in the
macro-like functions (For (), While () etc.).

Example

In> LocalSymbols(a,b)atb
Oout> $a6+ S$bo6;

See also:

UniqueConstant ()

3.16 Input/output and plotting

This chapter contains commands to use for input and output and plotting. All output commands write to the same
destination stream, called the “current output™. This is initially the screen, but may be redirected by some commands.
Similarly, most input commands read from the “current input” stream, which can also be redirected. The exception to
this rule are the commands for reading script files, which simply read a specified file.

FullForm (expr)

print an expression in LISP-format
Param expr expression to be printed in LISP-format

Evaluates “expr”, and prints it in LISP-format on the current output. It is followed by a newline. The evaluated
expression is also returned. This can be useful if you want to study the internal representation of a certain
expression.

Example

In> FullForm(atb+c);

(+ (+ ab)c)

Oout> atb+t+c;

In> FullForm (2+xI+xb"2);

(x (Complex 0 2) ("~ b 2))

Out> Complex(0,2)*xb"2;

The first example shows how the expression {atb+c} is
internally represented. In the second example, {2%I} is
first evaluated to {Complex(0,2)} before the expression
is printed.

134

Chapter 3. Reference Manual

Yacas, Release 1.6.1

See also:
LispRead (), Listify(),Unlist ()

Echo (item)
high-level printing routine
Param item the item to be printed

Param list a list of items to be printed

If passed a single item, {Echo} will evaluate it and print it to the current output, followed by a newline. If {item}
is a string, it is printed without quotation marks. If there is one argument, and it is a list, { Echo} will print all the
entries in the list subsequently to the current output, followed by a newline. Any strings in the list are printed
without quotation marks. All other entries are followed by a space. {Echo} can be called with a variable number
of arguments, they will all be printed, followed by a newline. {Echo} always returns True.

Example

In> Echo (5+3);

8

Out> True;

In> Echo ({"The square of two is ", 2x2});
The square of two is 4

Out> True;

In> Echo("The square of two is ", 2x2);
The square of two is 4

Out> True;

Note that one must use the second calling format if one wishes to
print a list:

In> Echo({a,b,c});

abc

Out> True;

In> Echo({{a,b,c}});

{a,b,c}

Out> True;

See also:
PrettyForm(),Write (), WriteString (), RuleBaseListed ()

PrettyForm (expr)
print an expression nicely with ASCII art

Param expr an expression

{PrettyForm} renders an expression in a nicer way, using ascii art. This is generally useful when the result of a
calculation is more complex than a simple number.

Example

In> Taylor (x,0,9)Sin (x)
Oout> x-x"3/6+x"5/120-x"7/5040+x79/362880;
In> PrettyForm (%)

3 5 7 9

b4 b4 b4 X

X - -+ - - - - 4+ -
6 120 5040 362880

Oout> True;

See also:

EvalFormula (),PrettyPrinter’ Set ()

3.16. Input/output and plotting 135

Yacas, Release 1.6.1

EvalFormula (expr)

print an evaluation nicely with ASCII art
Param expr an expression

Show an evaluation in a nice way, using {PrettyPrinter’Set} to show ‘input = output’.

Example

In> EvalFormula (Taylor(x,0,7)Sin(x))

3 5

X X

Taylor(x , 0, 5, Sin(x)) = x — — + ———
6 120

See also:

PrettyForm/()

TeXForm (expr)

export expressions to $LaTeX$
Param expr an expression to be exported

{TeXForm} returns a string containing a $LaTeX$ representation of the Yacas expression {expr}. Currently the
exporter handles most expression types but not all.

CForm (expr)

export expression to C++ code
Param expr expression to be exported

{CForm} returns a string containing C++ code that attempts to implement the Yacas expression {expr}. Cur-
rently the exporter handles most expression types but not all.

IsCFormable (expr)

check possibility to export expression to C++ code
Param expr expression to be exported (this argument is not evaluated)
Param funclist list of “allowed” function atoms

{IsCFormable} returns True if the Yacas expression {expr} can be exported into C++ code. This is a check
whether the C++ exporter {CForm} can be safely used on the expression. A Yacas expression is considered
exportable if it contains only functions that can be translated into C++ (e.g. {UnList} cannot be exported). All
variables and constants are considered exportable. The verbose option prints names of functions that are not
exportable. The second calling format of {IsSCFormable} can be used to “allow” certain function names that will
be available in the C++ code.

Example

In> IsCFormable (Sin(al)+2+Cos (bl))

Out> True;

In> V(IsCFormable (1+funcl23(bl)))

IsCFormable: Info: unexportable function(s):

funcl23

Out> False;

This returned :data: False ' because the function {funcl23} is not available in C++.
explicitly allow this function and then the expression will be considered
exportable:

In> IsCFormable (1+funcl23(bl), {funcl23})

Out> True;

136

Chapter 3. Reference Manual

We can

Yacas, Release 1.6.1

See also:
CForm (), V()

Write (expr,...)
low-level printing routine

Param expr expression to be printed

The expression “expr” is evaluated and written to the current output. Note that Write accept an arbitrary number
of arguments, all of which are written to the current output (see second example). {Write} always returns True.

Example

In> Write(1l);

10ut> True;

In> Write(1,2);

1 20ut> True;

Write does not write a newline, so the {Out>} prompt
immediately follows the output of {Write}.

See also:
Echo (), WriteString/()

WriteString (string)
low-level printing routine for strings

Param string the string to be printed

The expression “string” is evaluated and written to the current output without quotation marks. The argument
should be a string. WriteString always returns True.

Example

In> Write("Hello, world!"™);

"Hello, world!"Out> True;

In> WriteString("Hello, world!");

Hello, world!Out> True;

This example clearly shows the difference between Write and
WriteString. Note that Write and WriteString do not write a newline,
so the {Out>} prompt immediately follows the output.

See also:
Echo (), Write ()

Space ()
print one or more spaces

Param nr the number of spaces to print

The command {Space()} prints one space on the current output. The second form prints {nr} spaces on the
current output. The result is always True.

Example

In> Space(5);
Out> True;

See also:

Echo (), Write (), NewLine ()

3.16. Input/output and plotting 137

Yacas, Release 1.6.1

NewLine ()

print one or more newline characters
Param nr the number of newline characters to print

The command {NewLine()} prints one newline character on the current output. The second form prints “nr”
newlines on the current output. The result is always True.

Example

In> NewLine () ;
Out> True;

See also:

Echo (), Write (), Space ()

FromFile (name) body

connect current input to a file
Param name string, the name of the file to read
Param body expression to be evaluated

The current input is connected to the file “name”. Then the expression “body” is evaluated. If some functions
in “body” try to read from current input, they will now read from the file “name”. Finally, the file is closed and
the result of evaluating “body” is returned.

Example

Suppose that the file {foo} contains

2 + 5;

Then we can have the following dialogue:
In> FromFile ("foo") res := Read();

Out> 2+5;

In> FromFile ("foo") res := ReadToken();
out> 2;

See also:

ToFile(),FromString (), Read (), ReadToken ()

FromString(str) body;

connect current input to a string
Param str a string containing the text to parse
Param body expression to be evaluated

The commands in “body” are executed, but everything that is read from the current input is now read from the
string “str”. The result of “body” is returned.

Example
In> FromString ("2+5; this is never read") \
res := Read();
Out> 2+5;
In> FromString ("2+5; this is never read") \
res := Eval (Read());
out> 7;
See also:

ToString (), FromFile (), Read (), ReadToken ()

138

Chapter 3. Reference Manual

Yacas, Release 1.6.1

ToFile (name) body
connect current output to a file

Param name string, the name of the file to write the result to
Param body expression to be evaluated

The current output is connected to the file “name”. Then the expression “body” is evaluated. Everything that
the commands in “body” print to the current output, ends up in the file “name”. Finally, the file is closed and
the result of evaluating “body” is returned. If the file is opened again, the old contents will be overwritten. This
is a limitation of {ToFile}: one cannot append to a file that has already been created.

Example

Here is how one can create a file with C code to evaluate an expression:
In> ToFile ("exprl.c") WriteString(

CForm (Sgrt (x-y) *Sin(x)));

Out> True;

The file {exprl.c} was created in the current working directory and it
contains the line

sgrt (x-y) *sin (x)

As another example, take a look at the following command:

In> [Echo("Result:"); \

PrettyForm(Taylor(x,0,9) Sin(x)); 1;

Result:

3 5 7 9

b4 b4 b4 X

X - —— 4+ ——F - —— 4+ —————-
6 120 5040 362880

Out> True;

Now suppose one wants to send the output of this command to a
file. This can be achieved as follows:

In> ToFile ("out") [Echo("Result:"); \
PrettyForm(Taylor(x,0,9) Sin(x)); 1;

Out> True;

After this command the file {out} contains:

Result:

3 5 7 9

X X X X

X — —— 4 ——— — mm——
6 120 5040 362880

See also:

FromFile (), ToString (), Echo (), Write (), WriteString (), PrettyForm(), Taylor ()

ToString () body
connect current output to a string

Param body expression to be evaluated

The commands in “body” are executed. Everything that is printed on the current output, by {Echo} for instance,
is collected in a string and this string is returned.

Example
In> str := ToString() [WriteString(\
"The square of 8 is "); Write(872); 1;

Out> "The square of 8 is 64";

See also:

FromFile (), ToString (), Echo (), Write (), WriteString ()

3.16. Input/output and plotting 139

Yacas, Release 1.6.1

Read ()

read an expression from current input

Read an expression from the current input, and return it unevaluated. When the end of an input file is encoun-
tered, the token atom {EndOfFile} is returned.

Example

In> FromString ("2+5;") Read();
Qut> 2+5;

In> FromString ("") Read();
Out> EndOfFile;

See also:

FromFile(),FromString (), LispRead (), ReadToken (), Write ()

ToStdout () body

select initial output stream for output
Param body expression to be evaluated

When using {ToString} or {ToFile}, it might happen that something needs to be written to the standard default
initial output (typically the screen). {ToStdout} can be used to select this stream.

ReadCmdLineString (prompt)

read an expression from command line and return in string
Param prompt string representing the prompt shown on screen

This function allows for interactive input similar to the command line. When using this function, the history
from the command line is also available. The result is returned in a string, so it still needs to be parsed. This
function will typically be used in situations where one wants a custom read-eval-print loop.

Example

The following defines a function that when invoked keeps asking
for an expression (the <i>read</i> step), and then takes

the derivative of it (the <i>eval</i> step) and then

uses PrettyForm to display the result (the <i>print</i> step).

In> ReEvPr () := \

In> While (True) [\

In> PrettyForm (Deriv (x) \

In> FromString (ReadCmdLineString ("Deriv> ") :";")Read()); \
In> 1;

Oout> True;

Then one can invoke the command, from which the following interaction
might follow:

In> ReEVPr ()

Deriv> Sin(a”2*x/b)

/2 \

| a *x x | 2

Cos| —————-— | a * Db
\ b /

2

b

Deriv> Sin (x)

Cos(x)

Deriv>

See also:

140

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Read (), LispRead (), LispReadListed ()

LispRead ()
read expressions in LISP syntax

The function {LispRead} reads an expression in the LISP syntax from the current input, and returns it unevalu-
ated. When the end of an input file is encountered, the special token atom {EndOfFile} is returned. The Yacas
expression {a+b} is written in the LISP syntax as {(+ a b)}. The advantage of this syntax is that it is less
ambiguous than the infix operator grammar that Yacas uses by default.

Example

In> FromString (" (+ a b)") LispRead();

Out> a+b;

In> FromString (" (List (Sin x) (- (Cos x)))") \
LispRead();

Out> {Sin(x),-Cos (x)};

In> FromString (" (+ a b)")LispRead()

Out> a+b;

See also:
FromFile(),FromString (), Read (), ReadToken (), FullForm(), LispReadListed ()

LispReadListed ()
read expressions in LISP syntax

The function {LispReadListed} reads a LISP expression and returns it in a list, instead of the form usual to Yacas
(expressions). The result can be thought of as applying {Listify} to {LispRead}. The function {LispReadListed}
is more useful for reading arbitrary LISP expressions, because the first object in a list can be itself a list (this is
never the case for Yacas expressions where the first object in a list is always a function atom).

Example

In> FromString (" (+ a b)")LispReadListed()
Oout> {+,a,b};

See also:
FromFile(),FromString (), Read (), ReadToken (), FullForm(), LispRead()

ReadToken ()
read a token from current input

Read a token from the current input, and return it unevaluated. The returned object is a Yacas atom (not a string).
When the end of an input file is encountered, the token atom {EndOfFile} is returned. A token is for computer
languages what a word is for human languages: it is the smallest unit in which a command can be divided,
so that the semantics (that is the meaning) of the command is in some sense a combination of the semantics
of the tokens. Hence {a := foo} consists of three tokens, namely {a}, {:=}, and {foo}. The parsing of the
string depends on the syntax of the language. The part of the kernel that does the parsing is the “tokenizer”.
Yacas can parse its own syntax (the default tokenizer) or it can be instructed to parse XML or C++ syntax
using the directives {DefaultTokenizer} or {XmlTokenizer}. Setting a tokenizer is a global action that affects
all {ReadToken} calls.

Example
In> FromString("a := Sin(x)") While \
((tok := ReadToken()) != EndOfFile) \
Echo (tok);
a
Sin

3.16. Input/output and plotting 141

Yacas, Release 1.6.1

(

X

)

Out> True;

We can read some junk too:

In> FromString ("-$3")ReadToken () ;

out> -$;

The result is an atom with the string representation {-$}.

Yacas assumes that {-$} is an operator symbol yet to be defined.

The "{3}" will be in the next token.

(The results will be different if a non-default tokenizer is selected.)

See also:

FromFile(),FromString (), Read (), LispRead (), DefaultTokenizer ()

Load (name)

evaluate all expressions in a file

Param name string, name of the file to load
The file “name” is opened. All expressions in the file are read and evaluated. {Load} always returns {true}.
See also:

Use (), DefLoad(),DefaultDirectory (), FindFile ()

Use (name)

load a file, but not twice
Param name string, name of the file to load

If the file “name” has been loaded before, either by an earlier call to {Use} or via the {DefLoad} mechanism,
nothing happens. Otherwise all expressions in the file are read and evaluated. {Use} always returns {true}. The
purpose of this function is to make sure that the file will at least have been loaded, but is not loaded twice.

See also:

Load (), DefLoad(),DefaultDirectory ()

Defload (name)

load a {.def} file
Param name string, name of the file (without {.def} suffix)

The suffix {.def} is appended to “name’ and the file with this name is loaded. It should contain a list of functions,
terminated by a closing brace } (the end-of-list delimiter). This tells the system to load the file “name” as soon
as the user calls one of the functions named in the file (if not done so already). This allows for faster startup
times, since not all of the rules databases need to be loaded, just the descriptions on which files to load for which
functions.

See also:

Load (), Use(),DefaultDirectory ()

FindFile (name)

find a file in the current path
Param name string, name of the file or directory to find

The result of this command is the full path to the file that would be opened when the command {Load(name)}
would be invoked. This means that the input directories are subsequently searched for a file called “name”.
If such a file is not found, {FindFile} returns an empty string. {FindFile(*””)} returns the name of the default
directory (the first one on the search path).

142

Chapter 3. Reference Manual

Yacas, Release 1.6.1

See also:
Load(),DefaultDirectory ()

PatchLoad (name)
execute commands between {<?} and {?>} in file

Param name string, name of the file to “patch”

{PatchLoad} loads in a file and outputs the contents to the current output. The file can contain blocks delimited
by {<?} and {?>} (meaning “Yacas Begin” and “Yacas End”). The piece of text between such delimiters
is treated as a separate file with Yacas instructions, which is then loaded and executed. All output of write
statements in that block will be written to the same current output. This is similar to the way PHP works. You
can have a static text file with dynamic content generated by Yacas.

See also:
PatchString (), Load ()

N1 ()
the newline character

This function returns a string with one element in it, namely a newline character. This may be useful for building
strings to send to some output in the end. Note that the second letter in the name of this command is a lower
case {L} (from “line”).

Example

In> WriteString ("First line" : N1() : "Second line" : N1());
First line

Second line

Oout> True;

See also:
NewLine ()

V (expression)
set verbose output mode

Param expression expression to be evaluated in verbose mode

The function {V(expression)} will evaluate the expression in verbose mode. Various parts of Yacas can show
extra information about the work done while doing a calculation when using {V}. In verbose mode, {InVer-
boseMode()} will return True, otherwise it will return False.

Example

In> OldSolve ({x+2==0}, {x})
Out> {{-21}};

In> V(0ldSolve ({x+2==0}, {x}))
Entering OldSolve

From x+2==0 it follows that x = -2
X+2== simplifies to True
Leaving 0OldSolve

Out> {{-21}};

In> InVerboseMode ()

Out> False

In> V (InVerboseMode ())

Oout> True

See also:

Echo(),N(),OldSolve (), InVerboseMode ()

3.16. Input/output and plotting 143

Yacas, Release 1.6.1

InVerboseMode ()

check for verbose output mode
In verbose mode, {InVerboseMode()} will return True, otherwise it will return False.

Example

In> InVerboseMode ()
Out> False

In> V(InVerboseMode ())
Out> True

See also:

Echo(),N(),O0ldSolve (), V()

Plot2D (f(x))

adaptive two-dimensional plotting
Param f(x) unevaluated expression containing one variables (function to be plotted)
Param list list of functions to plot
Param a}, {b numbers, plotting range in the x coordinate
Param option atom, option name
Param value atom, number or string (value of option)

The routine {Plot2D} performs adaptive plotting of one or several functions of one variable in the specified
range. The result is presented as a line given by the equation $y=f(x)$. Several functions can be plotted at once.
Various plotting options can be specified. Output can be directed to a plotting program (the default is to use
{data}) to a list of values. The function parameter {f(x)} must evaluate to a Yacas expression containing at most
one variable. (The variable does not have to be called {x}.) Also, {N(f(x))} must evaluate to a real (not complex)
numerical value when given a numerical value of the argument {x}. If the function {f(x)} does not satisfy these
requirements, an error is raised. Several functions may be specified as a list and they do not have to depend on
the same variable, for example, { {f(x), g(y)}}. The functions will be plotted on the same graph using the same
coordinate ranges. If you have defined a function which accepts a number but does not accept an undefined
variable, {Plot2D} will fail to plot it. Use {NFunction} to overcome this difficulty. Data files are created in a
temporary directory {/tmp/plot.tmp/} unless otherwise requested. File names and other information is printed
if {InVerboseMode()} returns True on using {V()}. The current algorithm uses Newton-Cotes quadratures
and some heuristics for error estimation (see <yacasdoc://Algo/3/1/>). The initial grid of {points+1} points
is refined between any grid points a, b if the integral $Integrate(x,a,b)f(x)$ is not approximated to the
given precision by the existing grid. Default plotting range is {-5:5}. Range can also be specified as {x=-5:5}
(note the mandatory space separating “{=}"" and “{-}”); currently the variable name {x} is ignored in this case.

EEINNT3

Options are of the form {option=value}. Currently supported option names are: “points”, “precision”, “depth”,
“output”, “filename”, “yrange”. Option values are either numbers or special unevaluated atoms such as {data}.
If you need to use the names of these atoms in your script, strings can be used. Several option/value pairs may

be specified (the function {Plot2D} has a variable number of arguments).

*{yrange}: the range of ordinates to use for plotting, e.g. {yrange=0:20}. If no range is specified, the
default is usually to leave the choice to the plotting backend.

*{points}: initial number of points (default 23) — at least that many points will be plotted. The initial grid
of this many points will be adaptively refined.

{precision}: graphing precision (default $107(-6)$). This is interpreted as the relative precision of com-
puting the integral of $f(x)-Min(f(x))$ using the grid points. For a smooth, non-oscillating function this
value should be roughly 1/(number of screen pixels in the plot).

*{depth}: max. refinement depth, logarithmic (default 5) — means there will be at most $2"depth$ extra
points per initial grid point.

144

Chapter 3. Reference Manual

Yacas, Release 1.6.1

*{output}: name of the plotting backend. Supported names: {data} (default). The {data} backend will
return the data as a list of pairs such as {{{x1,y1}, {x2,y2},...}}.

e{filename}: specify name of the created data file. For example: {filename="datal.txt”}. The default is the
name {“output.data”}. Note that if several functions are plotted, the data files will have a number appended
to the given name, for example {data.txtl}, {data.txt2}.

Other options may be supported in the future.

The current implementation can deal with a singularity within the plotting range only if the function {f(x)}
returns {Infinity}, {-Infinity} or {Undefined} at the singularity. If the function {f(x)} generates a numerical
error and fails at a singularity, {Plot2D} will fail if one of the grid points falls on the singularity. (All grid points
are generated by bisection so in principle the endpoints and the {points} parameter could be chosen to avoid
numerical singularities.)

See also:
V(), NFunction(),Pl1ot3DS ()

Plot3DS (f{x, y))
three-dimensional (surface) plotting

Param f(x,y) unevaluated expression containing two variables (function to be plotted)
Param list list of functions to plot

Param a}, {b}, {c}, {d numbers, plotting ranges in the x and y coordinates
Param option atom, option name

Param value atom, number or string (value of option)

The routine {Plot3DS} performs adaptive plotting of a function of two variables in the specified ranges. The
result is presented as a surface given by the equation $z=f(x,y)$. Several functions can be plotted at once,
by giving a list of functions. Various plotting options can be specified. Output can be directed to a plotting
program (the default is to use {data}), to a list of values. The function parameter {f(x,y)} must evaluate to a
Yacas expression containing at most two variables. (The variables do not have to be called {x} and {y}.) Also,
{N(f(x,y))} must evaluate to a real (not complex) numerical value when given numerical values of the arguments
{x}, {y}. If the function {f(x,y)} does not satisfy these requirements, an error is raised. Several functions may
be specified as a list but they have to depend on the same symbolic variables, for example, {{f(X,y), g(y,x)}},
but not {{f(x,y), g(a,b)}}. The functions will be plotted on the same graph using the same coordinate ranges.
If you have defined a function which accepts a number but does not accept an undefined variable, {Plot3DS}
will fail to plot it. Use {NFunction} to overcome this difficulty. Data files are created in a temporary directory
{/tmp/plot.tmp/} unless otherwise requested. File names and other information is printed if {InVerboseMode()}
returns True on using {V()}. The current algorithm uses Newton-Cotes cubatures and some heuristics for
error estimation (see <yacasdoc://Algo/3/1/>). The initial rectangular grid of {xpoints+1}*{ypoints+1} points
is refined within any rectangle where the integral of $f(x,y)$ is not approximated to the given precision by the
existing grid. Default plotting range is {-5:5} in both coordinates. A range can also be specified with a variable
name, e.g. {x=-5:5} (note the mandatory space separating “{=}" and “{-}”). The variable name {x} should
be the same as that used in the function {f(x,y)}. If ranges are not given with variable names, the first variable
encountered in the function {f(x,y)} is associated with the first of the two ranges. Options are of the form

EEINT3 9 EEINY3

{option=value}. Currently supported option names are “points”, “xpoints”, “ypoints”, “precision”, “depth”,
“output”, “filename”, “xrange”, “yrange”, “zrange”. Option values are either numbers or special unevaluated
atoms such as {data}. If you need to use the names of these atoms in your script, strings can be used (e.g.
{output="data”}). Several option/value pairs may be specified (the function {Plot3DS} has a variable number

of arguments).

e{xrange}, {yrange}: optionally override coordinate ranges. Note that {xrange} is always the first variable
and {yrange} the second variable, regardless of the actual variable names.

3.16. Input/output and plotting 145

Yacas, Release 1.6.1

*{zrange}: the range of the z axis to use for plotting, e.g. {zrange=0:20}. If no range is specified, the
default is usually to leave the choice to the plotting backend. Automatic choice based on actual values may
give visually inadequate plots if the function has a singularity.

*{points}, {xpoints}, {ypoints}: initial number of points (default 10 each) — at least that many points will
be plotted in each coordinate. The initial grid of this many points will be adaptively refined. If {points} is
specified, it serves as a default for both {xpoints} and {ypoints}; this value may be overridden by {xpoints}
and {ypoints} values.

*{precision}: graphing precision (default 0.01). This is interpreted as the relative precision of computing
the integral of $f(x,y)-Min(f(x,y))$ using the grid points. For a smooth, non-oscillating function this value
should be roughly 1/(number of screen pixels in the plot).

«{depth}: max. refinement depth, logarithmic (default 3) — means there will be at most $2*depth$ extra
points per initial grid point (in each coordinate).

*{output}: name of the plotting backend. Supported names: {data} (default). The {data} backend will
return the data as a list of triples such as {{{x1, y1, z1}, {x2, y2, z2}, ...} }.

Other options may be supported in the future.

The current implementation can deal with a singularity within the plotting range only if the function {f(x,y)}
returns {Infinity}, {-Infinity} or {Undefined} at the singularity. If the function {f(x,y)} generates a numerical
error and fails at a singularity, { Plot3DS} will fail only if one of the grid points falls on the singularity. (All grid
points are generated by bisection so in principle the endpoints and the {xpoints}, { ypoints} parameters could be
chosen to avoid numerical singularities.)

The {filename} option is optional if using graphical backends, but can be used to specify the location of the
created data file.

Example

In> Plot3DS (a*b”2)

Out> True;

In> V(Plot3DS(Sin(x)*Cos (y),x=0:20, y=0:20,depth=3))
CachedConstant: Info: constant Pi is being
recalculated at precision 10

CachedConstant: Info: constant Pi is being
recalculated at precision 11

Plot3DS: using 1699 points for function Sin(x)*Cos (y)
Plot3DS: max. used 8 subdivisions for Sin(x)*Cos(y)
Plot3DS'datafile: created file '/tmp/plot.tmp/datal’
Out> True;

See also:

V(), NFunction(),Plot2D ()

XmlExplodeTag (xmltext)

convert XML strings to tag objects
Param xmltext string containing some XML tokens

{XmlExplodeTag} parses the first XML token in {xmltext} and returns a Yacas expression. The following
subset of XML syntax is supported currently:

*{<TAG [options]>} — an opening tag
*{</TAG [options]>} — a closing tag
*{<TAG [options] />} — an open/close tag

eplain (non-tag) text

146

Chapter 3. Reference Manual

Yacas, Release 1.6.1

The tag options take the form {paramname="value”}.

If given an XML tag, { XmlExplodeTag} returns a structure of the form {XmlTag(name,params,type)}. In the
returned object, {name} is the (capitalized) tag name, {params} is an assoc list with the options (key fields
capitalized), and type can be either “Open”, “Close” or “OpenClose”.

If given a plain text string, the same string is returned.

Example

In> XmlExplodeTag ("some plain text")
Out> "some plain text";

In> XmlExplodeTag ("<a name=\"blah blah\"
align=\"left\">")

Out> XmlTag ("A", {{"ALIGN","left"},
{"NAME", "blah blah"}}, "Open");

In> XmlExplodeTag ("</p>")

Out> XmlTag("P",{},"Close");

In> XmlExplodeTag ("
")

Out> XmlTag ("BR", {}, "OpenClose");

See also:
XmlTokenizer ()

XmlTokenizer ()
select the default syntax tokenizer for parsing the input

A “tokenizer” is an internal routine in the kernel that parses the input into Yacas expressions. This affects
all input typed in by a user at the prompt and also the input redirected from files or strings using {FromFile}
and {FromString} and read using {Read} or {ReadToken}. The Yacas environment currently supports some
experimental tokenizers for various syntaxes. {DefaultTokenizer} switches to the tokenizer used for default
Yacas syntax. {XmlTokenizer} switches to an XML syntax. Note that setting the tokenizer is a global side
effect. One typically needs to switch back to the default tokenizer when finished reading the special syntax.
Care needs to be taken when kernel errors are raised during a non-default tokenizer operation (as with any
global change in the environment). Errors need to be caught with the {TrapError} function. The error handler
code should re-instate the default tokenizer, or else the user will be unable to continue the session (everything
a user types will be parsed using a non-default tokenizer). When reading XML syntax, the supported formats
are the same as those of {XmlExplodeTag}. The parser does not validate anything in the XML input. After an
XML token has been read in, it can be converted into an Yacas expression with { XmlExplodeTag}. Note that
when reading XML, any plain text between tags is returned as one token. Any malformed XML will be treated
as plain text.

Example

In> [XmlTokenizer (); g:=ReadToken(); \
DefaultTokenizer();q;]

<a>

Oout> <a>;

Note that:

eafter switching to {XmlTokenizer} the {In>} prompt disappeared; the user typed {<a>} and the {Out>}
prompt with the resulting expression appeared.

*The resulting expression is an atom with the string representation {<a>}; it is <i>not</i> a string.
See also:

OMRead (), TrapError (), XmlExplodeTag (), ReadToken (),FromFile (), FromString ()

3.16. Input/output and plotting 147

Yacas, Release 1.6.1

DefaultTokenizer ()
select the default syntax tokenizer for parsing the input

A “tokenizer” is an internal routine in the kernel that parses the input into Yacas expressions. This affects
all input typed in by a user at the prompt and also the input redirected from files or strings using {FromFile}
and {FromString} and read using {Read} or {ReadToken}. The Yacas environment currently supports some
experimental tokenizers for various syntaxes. {DefaultTokenizer} switches to the tokenizer used for default
Yacas syntax. {XmlTokenizer} switches to an XML syntax. Note that setting the tokenizer is a global side
effect. One typically needs to switch back to the default tokenizer when finished reading the special syntax.
Care needs to be taken when kernel errors are raised during a non-default tokenizer operation (as with any
global change in the environment). Errors need to be caught with the {TrapError} function. The error handler
code should re-instate the default tokenizer, or else the user will be unable to continue the session (everything
a user types will be parsed using a non-default tokenizer). When reading XML syntax, the supported formats
are the same as those of {XmlExplodeTag}. The parser does not validate anything in the XML input. After an
XML token has been read in, it can be converted into an Yacas expression with {XmlExplodeTag}. Note that
when reading XML, any plain text between tags is returned as one token. Any malformed XML will be treated
as plain text.

See also:
OMRead (), TrapError (), XmlExplodeTag (), ReadToken (),FromFile (),FromString ()

OMForm (expression)
convert Yacas expression to OpenMath

Param expression expression to convert

{OMForm} prints an OpenMath representation of the input parameter {expression} to standard output. If a
Yacas symbol does not have a mapping defined by {OMDef}, it is translated to and from OpenMath as the
OpenMath symbol in the CD “yacas” with the same name as it has in Yacas.

Example

In> str:=ToString()OMForm(2+Sin (ax3))
Out> "<OMOBJ>

<OMA>
<OMS cd="arithl" name="plus"/>
<OMI>2</OMI>
<OMA>
<OMS cd="transcl" name="sin"/>
<OMA>

<OMS cd="arithl" name="times"/>
<OMV name="a"/>
<OMI>3</0OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>

"w.
’

In> FromString (str)OMRead ()
out> 2+Sin(a*3);

In> OMForm (NotDefinedInOpenMath (2+3))

<OMOBJ>
<OMA>
<OMS cd="yacas" name="NotDefinedInOpenMath"/>
<OMA>
<OMS cd="arithl" name="plus"/>
<OMI>2</OMI>
<OMI>3</OMI>

148 Chapter 3. Reference Manual

Yacas, Release 1.6.1

</OMA>
</OMA>
</OMOBJ>
Oout> True

See also:
XmlTokenizer (), XmlExplodeTaqg (), OMDef ()

OMRead ()
read OpenMath expression and convert to Yacas

Param expression expression to convert

{OMRead} reads an OpenMath expression from standard input and returns a normal Yacas expression that
matches the input OpenMath expression. If a Yacas symbol does not have a mapping defined by {OMDef}, it is
translated to and from OpenMath as the OpenMath symbol in the CD “yacas” with the same name as it has in
Yacas.

Example

In> str:=ToString()OMForm(2+Sin (ax3))
Out> "<OMOBJ>
<OMA>
<OMS cd="arithl" name="plus"/>
<OMI>2</OMI>
<OMA>
<OMS cd="transcl" name="sin"/>
<OMA>
<OMS cd="arithl" name="times"/>
<OMV name="a"/>
<OMI>3</OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>

"w.
’

In> FromString (str)OMRead ()
Oout> 2+Sin(ax3);

See also:
XmlTokenizer (), XmlExplodeTag (), OMDef ()

OMDef (yacasForm, cd, name)
define translations from Yacas to OpenMath and vice-versa.

Param yacasForm string with the name of a Yacas symbol, or a Yacas expression
Param c¢d OpenMath Content Dictionary for the symbol
Param name OpenMath name for the symbol

Param yacasToOM rule for translating an application of that symbol in Yacas into an OpenMath
expression

Param omToYacas rule for translating an OpenMath expression into an application of this symbol
in Yacas

{OMDef} defines the translation rules for symbols between the Yacas representation and {OpenMath}. The
first parameter, {yacasForm}, can be a string or an expression. The difference is that when giving an expres-
sion only the {omToYacas} translation is defined, and it uses the exact expression given. This is used for
{OpenMath} symbols that must be translated into a whole subexpression in Yacas, such as {setl:emptyset}

3.16. Input/output and plotting 149

Yacas, Release 1.6.1

which gets translated to an empty list as follows: In> OMDef({}, “setl”,’emptyset”) Out> True In> From-
String(“<OMOBJ><OMS cd="set]”’ name="emptyset”’/></OMOBJ> ") OMRead() Out> {} In> IsList(%) Out>
True Otherwise, a symbol that is not inside an application (OMA) gets translated to the Yacas atom with the
given name: In> OMDef(“EmptySet”, “setl”,’emptyset”) Warning: the mapping for setl:emptyset was al-
ready defined as { } , but is redefined now as EmptySet Out> True In> FromString(“<OMOBJ><OMS cd="set1”
name="emptyset”’/></OMOBJ> ”)OMRead() Out> EmptySet The definitions for the symbols in the Yacas li-
brary are in the » . rep script subdirectories. In those modules for which the mappings are defined, there is a file
called {om.ys} that contains the {OMDef} calls. Those files are loaded in {openmath.rep/om.ys}, so any new
file must be added to the list there, at the end of the file. A rule is represented as a list of expressions. Since both
OM and Yacas expressions are actually lists, the syntax is the same in both directions. There are two template
forms that are expanded before the translation:

*{$}: this symbol stands for the translation of the symbol applied in the original expression.

*{_path}: a path into the original expression (list) to extract an element, written as an underscore applied
to an integer or a list of integers. Those integers are indexes into expressions, and integers in a list are
applied recursively starting at the original expression. For example, {_2} means the second parameter of
the expression, while {_{3,2,1}} means the first parameter of the second parameter of the third parameter
of the original expression.

They can appear anywhere in the rule as expressions or subexpressions.

Finally, several alternative rules can be specified by joining them with the {|} symbol, and each of them can be
annotated with a post-predicate applied with the underscore {_} symbol, in the style of Yacas’ simplification
rules. Only the first alternative rule that matches is applied, so the more specific rules must be written first.

There are special symbols recognized by {OMForm} to output {OpenMath} constructs that have no specific
parallel in Yacas, such as an OpenMath symbol having a {CD} and {name}: Yacas symbols have only a name.
Those special symbols are:

*{OMS(cd, name)}: {<OMS cd="cd” name="name”>}
*{OMA(fxy...)}: {<KOMA>fxy..</OMA>}

*{OMBIND(binderSymbol, bvars, expression)}: {<OMBIND>binderSymbol bvars expres-
sion</OMBIND>}, where {bvars} must be produced by using { OMBVAR(...)}.

*{OMBVAR(x y ...)}: {<OMBVAR>x y ...</OMBVAR>}
*{OMEC(...)}: {<OME>...</OME>}

When translating from OpenMath to Yacas, we just store unknown symbols as {OMS(“cd”, “name”)}. This way
we don’t have to bother defining bogus symbols for concepts that Yacas does not handle, and we can evaluate
expressions that contain them.

Example

In> OMDef ("Sqgrt" , "arithl", "root", { $, _1, 2 }, S$(_1)_(_2=2) | (_1™(1/_2)));
Oout> True
In> OMForm (Sgrt (3))
<OMOBJ>
<OMA>
<OMS cd="arithl" name="root"/>
<OMI>3</OMI>
<OMI>2</0OMI>
</OMA>
</OMOBJ>
Oout> True
In> FromString ("<OMOBJ><OMA><OMS cd=\"arithl\" name=\"root\"/><OMI>16</0OMI><OMI>2</
Oout> Sqgrt (16)
In> FromString ("<OMOBJ><OMA><OMS cd=\"arithl\" name=\"root\"/><OMI>16</0OMI><OMI>3</|

OMI></OMA></C

OMI></OMA></C

150

Chapter 3. Reference Manual

Yacas, Release 1.6.1

Out> 167 (1/3)

In> OMDef ("Limit", "limitl", "limit", \

{ $, _2, OMS("limitl", "under"), OMBIND (OMS ("fnsl1",
[{ $, _2, OMS("limitl", "above"), OMBIND (OMS ("fnsl",
[{ $, _2, OMS("limitl", "both_sides"), OMBIND (OMS ("fnsl",
(s, _{3,2,1}, _1, Left, _{3,3}}_(_2=0OMS("limitl",
1{$, _{3,2,1}, _1, Right, _{3,3}}_(_2=0OMS("limitl",

1{$, _{3,2,1}, _1, _{3,3}}
)
In> OMForm (Limit (x,0) Sin(x)/x)

<OMOBJ>
<OMA>
<OMS cd="1imitl" name="limit"/>
<OMI>0</OMI>
<OMS cd="1imitl" name="both_sides"/>
<OMBIND>
<OMS cd="fnsl" name="lambda"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="arithl" name="divide"/>
<OMA>
<OMS cd="transcl" name="sin"/>
<OMV name="x"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>

Out> True
In> OMForm (Limit (x,0,Right) 1/x)
<OMOBJ>
<OMA>
<OMS cd="1imitl" name="limit"/>
<OMI>0</OMI>
<OMS cd="1imitl" name="above"/>
<OMBIND>
<OMS cd="fnsl1l" name="lambda"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="arithl" name="divide"/>
<OMI>1</OMI>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Out> True
In> FromString(ToString()OMForm (Limit (x, 0, Right)
Out> Limit (x,0,Right)1/x
In> %
Out> Infinity

1/x))OMRead ()

"lambda"), OMBVAR(_1),

"lambda"), OMBVAR(_1),
"lambda"), OMBVAR (_]
"below")) \
"above")) \
\

3.16. Input/output and plotting

151

4) }_(_3=Left
4) }_(_3=Rigt
1), _3) 1},

Yacas, Release 1.6.1

See also:

OMRead (), OMForm ()

3.17 String manipulation

StringMid’ Set (index, substring, string)
change a substring

Param index index of substring to get
Param substring substring to store
Param string string to store substring in
Set (change) a part of a string. It leaves the original alone, returning a new changed copy.

Example

In> StringMid'Set (3, "XY", "abcdef")
Out> "abXYef";

See also:
StringMid’ Get (), Length ()

StringMid’ Get (index, length, string)
retrieve a substring

Param index index of substring to get
Param length length of substring to get
Param string string to get substring from
{StringMid’Get} returns a part of a string. Substrings can also be accessed using the {[]} operator.

Example

In> StringMid'Get (3,2, "abcdef")
Qut> "cd";

In> "abcdefg"[2 .. 4]

Out> "bcd";

See also:
StringMid’Set (), Length ()

Atom (“string”)
convert string to atom

Param “string” a string

Returns an atom with the string representation given as the evaluated argument. Example: {Atom(‘“fo0”);}
returns {foo}.

Example

In> Atom("a")
Out> aj;

See also:

String()

152 Chapter 3. Reference Manual

Yacas, Release 1.6.1

String (atom)
convert atom to string

Param atom an atom
{String} is the inverse of { Atom}: turns {atom} into {“atom’}.

Example

In> String(a)
out> "a",

See also:
Atom ()

ConcatStrings (strings)
concatenate strings

Param strings one or more strings
Concatenates strings.

Example

In> ConcatStrings("a","b","c")
Out> "abc";

See also:
Concat ()

PatchString (string)
execute commands between {<?} and {?>} in strings

Param string a string to patch

This function does the same as PatchLoad, but it works on a string instead of on the contents of a text file. See
PatchLoad for more details.

Example

In> PatchString("Two plus three is <? Write(2+3); 2> ");
Out> "Two plus three is 5 ";

See also:

PatchLoad()

3.18 Probability and Statistics

3.18.1 Probability

Each distribution is represented as an entity. For each distribution known to the system the consistency of param-
eters is checked. If the parameters for a distribution are invalid, the functions return Undefined. For example,
NormalDistribution (a,-1) evaluates to Undefined, because of negative variance.

BernoulliDistribution (p)
Bernoulli distribution

Param p number, probability of an event in a single trial

3.18. Probability and Statistics 153

Yacas, Release 1.6.1

A random variable has a Bernoulli distribution with probability p if it can be interpreted as an indicator of an
event, where p is the probability to observe the event in a single trial. Numerical value of p must satisfy 0 < p
< 1.

See also:
BinomialDistribution ()

BinomialDistribution (p, n)
binomial distribution

Param p number, probability to observe an event in single trial
Param n number of trials

Suppose we repeat a trial n times, the probability to observe an event in a single trial is p and outcomes in all
trials are mutually independent. Then the number of trials when the event occurred is distributed according to
the binomial distribution. The probability of that is BinomialDistribution (p, n). Numerical value of
p must satisfy 0 < p < 1. Numerical value of n must be a positive integer.

See also:
BernoulliDistribution ()

tDistribution (m)
Student’s t distribution

Param {m} integer, number of degrees of freedom

PDF (dist, x)
probability density function

Param dist a distribution type
Param x a value of random variable

If dist is a discrete distribution, then PDF returns the probability for a random variable with distribution dist
to take a value of x. If dist is a continuous distribution, then PDF returns the density function at point x.

See also:

CDF ()

3.18.2 Statistics

ChiSquareTest (observed, expected)
Pearson’s ChiSquare test

Param observed list of observed frequencies
Param expected list of expected frequencies
Param params number of estimated parameters

ChiSquareTest is intended to find out if our sample was drawn from a given distribution or not. To find this
out, one has to calculate observed frequencies into certain intervals and expected ones. To calculate expected
frequency the formula n; = np; must be used, where p; is the probability measure of ¢-th interval, and n is the
total number of observations. If any of the parameters of the distribution were estimated, this number is given as
params. The function returns a list of three local substitution rules. First of them contains the test statistic, the
second contains the value of the parameters, and the last one contains the degrees of freedom. The test statistic
is distributed as ChiSquareDistribution ().

154 Chapter 3. Reference Manual

Yacas, Release 1.6.1

3.19 Number theory

This chapter describes functions that are of interest in number theory. These functions typically operate on integers.
Some of these functions work quite slowly.

IsPrime (n)
test for a prime number

Param n integer to test

IsComposite (n)
test for a composite number

Param n positive integer

IsCoprime (m, n)
test if integers are coprime

Param m positive integer
Param n positive integer
Param list list of positive integers

IsSquareFree (n)
test for a square-free number

Param n positive integer

IsPrimePower (n)
test for a power of a prime number

Param n integer to test

NextPrime (i)
generate a prime following a number

Param i integer value

IsTwinPrime (n)
test for a twin prime

Param n positive integer

IsIrregularPrime (n)
test for an irregular prime

Param n positive integer

IsCarmichaelNumber (n)
test for a Carmichael number

Param n positive integer

Factors (x)
factorization

Param x integer or univariate polynomial

IsAmicablePair (m, n)
test for a pair of amicable numbers

Param m positive integer

Param n positive integer

3.19. Number theory 155

Yacas, Release 1.6.1

Factor (x)
factorization, in pretty form

Param x integer or univariate polynomial

Divisors (n)
number of divisors

Param n positive integer

DivisorsSum (n)
the sum of divisors

Param n positive integer

ProperDivisors (n)
the number of proper divisors

Param n positive integer

ProperDivisorsSum (n)
the sum of proper divisors

Param n positive integer

Moebius (n)
the Moebius function

Param n positive integer

CatalanNumber (n)
return the n-th Catalan Number

Param n positive integer

FermatNumber (n)
return the n-th Fermat Number

Param n positive integer

HarmonicNumber (n)
return the n-th Harmonic Number

Param n positive integer
Param r positive integer

StirlingNumberl (n, m)
return the n, m-th Stirling Number of the first kind

Param n positive integers
Param m positive integers

StirlingNumberl (n, m)
return the n, m-th Stirling Number of the second kind

Param n positive integer
Param m positive integer

DivisorsList (n)
the list of divisors

Param n positive integer

156 Chapter 3. Reference Manual

Yacas, Release 1.6.1

SquareFreeDivisorsList (n)
the list of square-free divisors

Param n positive integer

MoebiusDivisorsList (n)
the list of divisors and Moebius values

Param n positive integer

SumForDivisors (var, n, expr)
loop over divisors

Param var atom, variable name
Param n positive integer
Param expr expression depending on var

RamanujanSum (k, n)
compute the Ramanujan’s sum

Param k positive integer

Param n positive integer

This function computes the Ramanujan’s sum, i.e. the sum of the n-th powers of the k-th primitive roots of the

unit:

3 ep(2in)

=1

where [runs thought the integers between 1 and k—1 that are coprime to [. The computation is done by using
the formula in T. M. Apostol, <i>Introduction to Analytic Theory</i> (Springer-Verlag), Theorem 8.6.

Todo

check the definition

PAdicExpand (n, p)
p-adic expansion

Param n number or polynomial to expand
Param p base to expand in

IsQuadraticResidue (m, n)
functions related to finite groups

Param m integer
Param n odd positive integer

GaussianFactors (z)
factorization in Gaussian integers

Param z Gaussian integer

GaussianNorm(z)
norm of a Gaussian integer

Param z Gaussian integer

3.19. Number theory

157

Yacas, Release 1.6.1

IsGaussianUnit (z)
test for a Gaussian unit

Param z a Gaussian integer

IsGaussianPrime (7)
test for a Gaussian prime

Param z a complex or real number

GaussianGed (z, w)
greatest common divisor in Gaussian integers

Param z Gaussian integer

Param w Gaussian integer

3.20 Numerical methods

NIntegrate (x, x0, xI) expr
numerical integration

Param x integration variable

Param x0 lower integration limit

Param x1 upper integration limit

Param expr integrand
Numerically integrate expr over x from x0 to x1.
See also:

Integrate ()

3.21 Functions related to programming in Yacas

3.21.1 Introduction

This document aims to be a reference for functions that are useful when programming in { Yacas}, but which are not
necessarily useful when using { Yacas}. There is another document that describes the functions that are useful from a
users point of view.

3.21.2 Programming

This chapter describes functions useful for writing Yacas scripts.

/* ——— Start of comment
*/ ——— end of comment
// ——-— Beginning of one-line comment

/* comment */
// comment

Introduce a comment block in a source file, similar to C++ comments. // makes everything until the end of the line a
comment, while /+ and «/ may delimit a multi-line comment.

158 Chapter 3. Reference Manual

Yacas, Release 1.6.1

Example

atb; // get result
a + /+ add them x/ b;

Prog (exprl, expr2, ...)
block of statements

param exprl expression

The {Prog} and the {[...]} construct have the same effect: they evaluate all arguments in order and
return the result of the last evaluated expression.

{Prog(a,b);} is the same as typing {[a;b;];} and is very useful for writing out function bodies. The
{[... 1} construct is a syntactically nicer version of the {Prog} call; it is converted into {Prog(...)}
during the parsing stage.

Bodied (op, precedence)
declare op as bodied function

Param op string, the name of a function
Param precedence nonnegative integer (evaluated)
Declares a special syntax for the function to be parsed as a bodied function.
For(pre, condition, post) statement;
Here the function For has 4 arguments and the last argument is placed outside the parentheses.

The precedence of a “bodied” function refers to how tightly the last argument is bound to the parentheses.
This makes a difference when the last argument contains other operators. For example, when taking the deriva-
tive D(x) Sin(x)+Cos(x) both {Sin} and {Cos} are under the derivative because the bodied function {D} binds
less tightly than the infix operator “{+}”.

See also:
IsBodied (), OpPrecedence ()

Infix (op[, precedence])
define function syntax (infix operator)

Param op string, the name of a function
Param precedence nonnegative integer (evaluated)
Declares a special syntax for the function to be parsed as a bodied, infix, postfix, or prefix operator.

“Infix” functions must have two arguments and are syntactically placed between their arguments. Names of

infix functions can be arbitrary, although for reasons of readability they are usually made of non-alphabetic
characters.

See also:
IsBodied (), OpPrecedence ()

Postfix (op[, precedence])
define function syntax (postfix operator)

Param op string, the name of a function
Param precedence nonnegative integer (evaluated)
Declares a special syntax for the function to be parsed as a bodied, infix, postfix, or prefix operator.

“Postfix” functions must have one argument and are syntactically placed after their argument.

3.21. Functions related to programming in Yacas 159

Yacas, Release 1.6.1

See also:
IsBodied (), OpPrecedence ()

Prefix (op[, precedence])
define function syntax (prefix operator)

Param op string, the name of a function

Param precedence nonnegative integer (evaluated)
Declares a special syntax for the function to be parsed as a bodied, infix, postfix, or prefix operator.
“Prefix” functions must have one argument and are syntactically placed before their argument.

Function name can be any string but meaningful usage and readability would require it to be either made up

entirely of letters or entirely of non-letter characters (such as “+”, :” etc.). Precedence is optional (will be set
to 0 by default).

Example

In> YY x := x+1;
CommandLine (1) : Error parsing expression

In> Prefix ("YY", 2)
Out> True;

In> YY x := x+1;
Oout> True;

In> YY YY 2%3

out> 12;

In> Infix ("##", 5)
Out> True;

In> a ## b ## c
Out> a##b##c;

Note that, due to a current parser limitation, a function atom that is declared prefix cannot be used by itself as
an argument.

In> YY
CommandLine (1) : Error parsing expression

See also:
IsBodied (), OpPrecedence ()

IsBodied (op)
check for function syntax

Param op string, the name of a function

Check whether the function with given name {“op”} has been declared as a “bodied”, infix, postfix, or prefix
operator, and return True or False.

IsInfix (op)
check for function syntax

Param op string, the name of a function

Check whether the function with given name {“op”} has been declared as a “bodied”, infix, postfix, or prefix
operator, and return True or False.

IsPostfix (op)
check for function syntax

Param op string, the name of a function

160 Chapter 3. Reference Manual

Yacas, Release 1.6.1

Check whether the function with given name {“op”} has been declared as a “bodied”, infix, postfix, or prefix
operator, and return True or False.

IsPrefix (op)
check for function syntax

Param op string, the name of a function

Check whether the function with given name {“op”} has been declared as a “bodied”, infix, postfix, or prefix
operator, and return True or False.

Example

In> IsInfix("+");

Out> True;

In> IsBodied("While™);
Out> True;

In> IsBodied("Sin");
Out> False;

In> IsPostfix("!");
Oout> True;

See also:
Bodied (), OpPrecedence ()

OpPrecedence (op)
get operator precedence

Param op string, the name of a function

Returns the precedence of the function named “op” which should have been declared as a bodied function or an
infix, postfix, or prefix operator. Generates an error message if the string str does not represent a type of function
that can have precedence.

For infix operators, right precedence can differ from left precedence. Bodied functions and prefix operators
cannot have left precedence, while postfix operators cannot have right precedence; for these operators, there is
only one value of precedence.

OpLeftPrecedence (op)
get operator precedence

Param op string, the name of a function

Returns the precedence of the function named “op” which should have been declared as a bodied function or an
infix, postfix, or prefix operator. Generates an error message if the string str does not represent a type of function
that can have precedence.

For infix operators, right precedence can differ from left precedence. Bodied functions and prefix operators
cannot have left precedence, while postfix operators cannot have right precedence; for these operators, there is
only one value of precedence.

OpRightPrecedence (op)
get operator precedence

Param string op name of a function

Returns the precedence of the function named “op” which should have been declared as a bodied function or an
infix, postfix, or prefix operator. Generates an error message if the string str does not represent a type of function
that can have precedence.

For infix operators, right precedence can differ from left precedence. Bodied functions and prefix operators
cannot have left precedence, while postfix operators cannot have right precedence; for these operators, there is
only one value of precedence.

3.21. Functions related to programming in Yacas 161

Yacas, Release 1.6.1

Example

In> OpPrecedence ("+")
Out> 6;

In> OpLeftPrecedence("!")
Out> 0;

RightAssociative (op)

declare associativity
Param op string, the name of a function

This makes the operator right-associative. For example:

RightAssociative ("x")

would make multiplication right-associative. Take care not to abuse this function, because the reverse, making
an infix operator left-associative, is not implemented. (All infix operators are by default left-associative until
they are declared to be right-associative.)

See also:

OpPrecedence ()

LeftPrecedence (op, precedence)

set operator precedence
Param op string, the name of a function
Param precedence nonnegative integer

{“op”} should be an infix operator. This function call tells the infix expression printer to bracket the left or right
hand side of the expression if its precedence is larger than precedence.

This functionality was required in order to display expressions like {a-(b-c)} correctly. Thus, {a+b+c} is the
same as {a+(b+c)}, but {a-(b-c)} is not the same as {a-b-c}.

Note that the left and right precedence of an infix operator does not affect the way Yacas interprets expressions
typed by the user. You cannot make Yacas parse {a-b-c} as {a-(b-c)} unless you declare the operator “{-}” to
be right-associative.

See also:

OpPrecedence (), OpLeftPrecedence (), OpRightPrecedence (), RightAssociative ()

RightPrecedence ()

set operator precedence(op, precedence)
Param op string, the name of a function
Param precedence nonnegative integer

{“op”} should be an infix operator. This function call tells the infix expression printer to bracket the left or right
hand side of the expression if its precedence is larger than precedence.

This functionality was required in order to display expressions like {a-(b-c)} correctly. Thus, {a+b+c} is the
same as {a+(b+c)}, but {a-(b-c)} is not the same as {a-b-c}.

Note that the left and right precedence of an infix operator does not affect the way Yacas interprets expressions
typed by the user. You cannot make Yacas parse {a-b-c} as {a-(b-c)} unless you declare the operator “{-}” to
be right-associative.

See also:

OpPrecedence (), OpLeftPrecedence (), OpRightPrecedence (), RightAssociative ()

162

Chapter 3. Reference Manual

Yacas, Release 1.6.1

RuleBase (name, params)
define function with a fixed number of arguments

Param name string, name of function
Param params list of arguments to function

Define a new rules table entry for a function “name”, with {params} as the parameter list. Name can be either a
string or simple atom.

In the context of the transformation rule declaration facilities this is a useful function in that it allows the stating
of argument names that can he used with HoldArg.

Functions can be overloaded: the same function can be defined with different number of arguments.
See also:
MacroRuleBase (), RuleBaseListed (), MacroRuleBaseListed (), HoldArg (), Retract ()

RuleBaseListed (name, params)
define function with variable number of arguments

Param name string, name of function
Param params list of arguments to function

The command {RuleBaseListed} defines a new function. It essentially works the same way as {RuleBase},
except that it declares a new function with a variable number of arguments. The list of parameters {params}
determines the smallest number of arguments that the new function will accept. If the number of arguments
passed to the new function is larger than the number of parameters in {params}, then the last argument actually
passed to the new function will be a list containing all the remaining arguments.

A function defined using {RuleBaseListed} will appear to have the arity equal to the number of parameters in
the {param} list, and it can accept any number of arguments greater or equal than that. As a consequence, it will
be impossible to define a new function with the same name and with a greater arity.

The function body will know that the function is passed more arguments than the length of the {param} list,
because the last argument will then be a list. The rest then works like a {RuleBase}-defined function with a
fixed number of arguments. Transformation rules can be defined for the new function as usual.

Example

The definitions

RuleBaseListed ("f", {a,b,c})
10 # £(_a,_b,{_c,_d}) <—-
Echo ({"four args",a,b,c,d});
20 # f(_a,_b,c_IsList) <—--
Echo ({"more than four args",a,b,c});
30 # £(_a,_b,_c) <—— Echo({"three args",a,b,c});

give the following interaction:

In> f(A)

Oout> f(A);

In> f(A,B)

Out> f(A,B);

In> f(A,B,C)
three args A B C
Out> True;

In> f(A,B,C,D)
four args A B C D
Out> True;

3.21. Functions related to programming in Yacas 163

Yacas, Release 1.6.1

In> f(A,B,C,D,E)

more than four args A B {C,D,E}
Oout> True;

In> £(A,B,C,D,E,E)

more than four args A B {C,D,E,E}
Oout> True;

The function {f} now appears to occupy all arities greater than 3:

In> RuleBase ("f", {x,vy,z,t});
CommandLine (1) : Rule base with this arity already defined

See also:

RuleBase (), Retract (), Echo ()

Rule (operator, arity, precedence, predicate) body

define a rewrite rule
Param “‘operator” string, name of function
Param arity
Param precedence integers
Param predicate function returning boolean
Param body expression, body of rule

CLINT3 9 <«

Define a rule for the function “operator” with “arity”, “precedence”, “predicate” and “body”. The “precedence”
goes from low to high: rules with low precedence will be applied first.

The arity for a rules database equals the number of arguments. Different rules data bases can be built for
functions with the same name but with a different number of arguments.

Rules with a low precedence value will be tried before rules with a high value, so a rule with precedence 0 will
be tried before a rule with precedence 1.

HoldArg (operator, parameters)

mark argument as not evaluated
{“operator”} — string, name of a function {parameter} — atom, symbolic name of parameter

Specify tha