Yacas
Release 1.8.0

Ayal Pinkus, Serge Winitzki and Grzegorz Mazur

Nov 01, 2019

9

Getting started

Tutorial

Reference Manual
Programming in Yacas

The Yacas Book of Algorithms
Credits

License

Glossary

Indices and tables

Bibliography

Index

CONTENTS

19
193
233
273
277
293
297
299

301

CHAPTER
ONE

GETTING STARTED

1.1 Installation

Yacas is available for a variety of platforms. See http://www.yacas.org/getting_started/downloads/ for binary packages
and installation instructions.

1.2 Installation from sources

1.2.1 Getting sources

Version 1.8.0 can be downloaded from https://github.com/grzegorzmazur/yacas/archive/v1.8.0.zip or https://github.
com/grzegorzmazur/yacas/archive/v1.8.0.tar.gz, while the current development version is accessible from https:
/lgithub.com/grzegorzmazur/yacas/archive/develop.zip.

1.2.2 Compilation

Common build options

ENABLE CYACAS_CONSOLE Build text console for the native yacas engine. Enabled by default.
ENABLE_CYACAS_GUI Build graphical interface for the native yacas engine. Requires Qt 5.5. Enabled by default.
ENABLE _CYACAS_GUI_PRIVATE_CODEMIRROR Use bundled copy of CodeMirror. Enabled by default.
ENABLE_CYACAS_GUI_PRIVATE_MATHJAX Use bundled copy of MathJax. Enabled by default.

ENABLE_CYACAS_KERNEL Build native yacas kernel for Jupyter Notebook. Requires Boost, ZeroMQ and
zmqpp. Disabled by default.

ENABLE _JYACAS Build the Java yacas engine and text console for it. Disabled by default.
ENABLE_DOCS Generate HTML documentation. Disabled by default.

MacOS X

* Open Terminal window
* Change directory to the yacas source directory

¢ Execute

http://www.yacas.org/getting_started/downloads/
https://github.com/grzegorzmazur/yacas/archive/v1.8.0.zip
https://github.com/grzegorzmazur/yacas/archive/v1.8.0.tar.gz
https://github.com/grzegorzmazur/yacas/archive/v1.8.0.tar.gz
https://github.com/grzegorzmazur/yacas/archive/develop.zip
https://github.com/grzegorzmazur/yacas/archive/develop.zip

Yacas, Release 1.8.0

mkdir build
cd build
cmake -G Xcode [-Dcommon_option=value ...]

* Open generated project in Xcode and build the Release variant

Microsoft Windows

* Open Command Prompt window
* Change directory to the yacas source directory

¢ Execute

mkdir build
cd build

cmake -G "Visual Studio 14 2015 Win64" [-Dcommon_option=value ...]

* Open generated project in Visual Studio and build the Release variant

Linux

* Open Terminal window
» Change directory to the yacas source directory

¢ Execute

mkdir build

cd build
cmake —-DCMAKE_BUILD_TYPE=Release [-Dcommon_option=value
make

¢ To install newly built binaries execute make install

Java

* Open Terminal or Command Prompt window
» Change directory to the yacas source directory

e Execute ant Jjar

yacas-online

* build yacas using emscripten

mkdir build_js
cd build_js

—cmake \

—DENABLE_DOCS=No -DCMAKE_BUILD_TYPE=Release

cmake —-DCMAKE_TOOLCHAIN_FILE=<EMSCRIPTEN_ROOT>/cmake/Modules/Platform/Emscripten.

-DENABLE_CYACAS_GUI=No -DENABLE_CYACAS_KERNEL=No —-DENABLE_JYACAS=No \

(continues on next page)

Chapter 1. Getting started

Yacas, Release 1.8.0

(continued from previous page)

make
cd ..

where <EMSCRIPTEN_ROOT> stands for the Emscripten root directory
¢ copy
— build_js/cyacas/yacas/yacas.js
— build_js/cyacas/yacas/yacas.js.mem
- cyacas/yacas—gui/resources/yacas—online.html
— cyacas/yacas—gui/resources/jquery/
- cyacas/yacas—gui/resources/mathbar/
- cyacas/yacas—gui/resources/plot3d/
— cyacas/yacas—gui/resources/yacas_gui/

to the installation directory

1.2. Installation from sources

Yacas, Release 1.8.0

4 Chapter 1. Getting started

CHAPTER
TWO

TUTORIAL

2.1 Yacas syntax

Expressions in Yacas are generally built up of words. We will not bore you with the exact definitions of such words, but
roughly speaking they are either sequences of alphabetic letters, or a number, or a bracket, or space to separate words,
or a word built up from symbols like +, —, %, <, efc.. If you want, you can mix these different types of characters, by
surrounding them with quotes. Thus, "This text" is what is called one token, surrounded by quotes.

The usual notation people use when writing down a calculation is called the infix notation, and you can readily
recognize it, as for example 2+3 and 3+4. Prefix operators also exist. These operators come before an expression,
like for example the unary minus sign (called unary because it accepts one argument), — (3+4) . In addition to prefix
operators there are also postfix operators, like the exclamation mark to calculate the factorial of a number, 10!.

Yacas understands standard simple arithmetic expressions. Some examples:
e 2+3 (addition)
e 23 (multiplication)
e 2-3 (subtraction)
e 2”3 (raising powers)
* 2+3x4
o (243)+4
¢ 6/3 (division)
*1/3

Divisions are not reduced to real numbers, but kept as a rational for as long as possible, since the rational is an exact
correct expression (and any real number would just be an approximation). Yacas is able to change a rational in to a
number with the function N, for example N (1/3).

Operators have precedence, meaning that certain operations are done first before others are done. For example, in
2+3«4 the multiplication is performed before the addition. The usual way to change the order of a calculation is with
round brackets. The round brackets in the expression (2+3) %4 will force Yacas to first add 2 and 3, and then multiply
the result.

Simple function calls have their arguments between round brackets, separated by commas. Examples are Sin (P1i)
(which indicates that you are interested in the value of the trigonometric function sin applied to the constant 7),
and Min (5,1, 3,-5,10) (which should return the lowest of its arguments, —5 in this case). Functions usually
have the form f (), £ (x) or £ (x,y,z, ...) depending on how many arguments the function accepts. Functions
always return a result. For example, Cos (0) should return 1. Evaluating functions can be thought of as simplifying
an expression as much as possible. Sometimes further simplification is not possible and a function returns itself
unsimplified, like taking the square root of an integer Sqrt (2) . A reduction to a number would be an approximation.
We explain elsewhere how to get Yacas to simplify an expression to a number.

Yacas, Release 1.8.0

Yacas allows for use of the infix notation, but with some additions. Functions can be bodied, meaning that the last
argument is written past the close bracket. An example is ForEach, where we write ForEach (item, 1 .. 10)
Echo (item) ;. Echo (item) is the last argument to the function ForEach.

A list is enclosed with curly braces, and is written out with commas between the elements, like for example {1, 2, 3}.
items in lists (and things that can be made to look like lists, like arrays and strings), can then be accessed by indicating
the index between square brackets after the object. {a, b, c} [2] should return b, as b is the second element in the
list (Yacas starts counting from 1 when accessing elements). The same can be done with strings: "abc" [2].

And finally, function calls can be grouped together, where they get executed one at a time, and the result of executing
the last expression is returned. This is done through square brackets, as [Echo ("Hello"); Echo ("World");
True;];,which first writes Hel1lo to screen, then Wor1d on the next line, and then returns True.

When you type in an expression, you have to take in to account the fact that Yacas is case-sensitive. This means that a
function sin (with all lowercase) is a different function from Sin (which starts with a capital S), and the variable v
is a different one from V.

2.2 Using Yacas from the calculation center

As mentioned earlier, you can type in commands on the command line in the calculation center. Typically, you would
enter one statement per line, for example, click on Sin (Pi/2) ;. The has a memory, and remembers results from
calculations performed before. For example, if you define a function on a line (or set a variable to a value), the defined
function (or variable) are available to be used in following lines. A session can be restarted (forgetting all previous
definitions and results) by typing restart. All memory is erased in that case.

Statements should end with a semicolon ; although this is not required in interactive sessions (Yacas will append a
semicolon at end of line to finish the statement).

The command line has a history list, so it should be easy to browse through the expressions you entered previously
using the up and down arrow keys.

When a few characters have been typed, the command line will use the characters before the cursor as a filter into
the history, and allow you to browse through all the commands in the history that start with these characters quickly,
instead of browsing through the entire history. If the system recognized the first few characters, it will also show the
commands that start with the sequence entered. You can use the arrow keys to browse through this list, and then select
the intended function to be inserted by pressing enter.

Commands spanning multiple lines can (and actually have to) be entered by using a trailing backslash at end of each
continued line. For example, clicking on 2+3+ will result in an error, but entering the same with a backslash at the
end and then entering another expression will concatenate the two lines and evaluate the concatenated input.

Incidentally, any text Yacas prints without a prompt is either a message printed by a function as a side-effect, or an
error message. Resulting values of expressions are always printed after an Out > prompt.

2.3 Yacas as a symbolic calculator

We are ready to try some calculations. Yacas uses a C-like infix syntax and is case-sensitive. Here are some exact
manipulations with fractions for a start: 1/14+5/21 (30— (1+1/2) x5%2);

The standard scripts already contain a simple math library for symbolic simplification of basic algebraic functions.
Any names such as x are treated as independent, symbolic variables and are not evaluated by default. Some examples
to try:

* 0+x

e xt+lxy

6 Chapter 2. Tutorial

Yacas, Release 1.8.0

* Sin(ArcSin(alpha))+Tan (ArcTan (beta))

Note that the answers are not just simple numbers here, but actual expressions. This is where Yacas shines. It was
built specifically to do calculations that have expressions as answers.

In Yacas after a calculation is done, you can refer to the previous result with . For example, we could first
type (x+1)* (x—1), and then decide we would like to see a simpler version of that expression, and thus type
Simplify (%), which should result in x*2-1.

The special operator $ automatically recalls the result from the previous line. The function Simplify attempts to
reduce an expression to a simpler form. Note that standard function names in Yacas are typically capitalized. Multiple
capitalization such as ArcSin is sometimes used. The underscore character _ is a reserved operator symbol and
cannot be part of variable or function names.

Yacas offers some more powerful symbolic manipulation operations. A few will be shown here to wetten the appetite.
Some simple equation solving algorithms are in place:

* Solve (x/ (1+x) == a, X);

e Solve (x"2+x == 0, x);

* Solve (atx*y==z,x) ;
(Note the use of the == operator, which does not evaluate to anything, to denote an “equation” object.)

Taylor series are supported, for example: Taylor (x, 0,3) Exp (x) is abodied operator that expands Exp (x) for
x around x=0, up to order 3.

Symbolic manipulation is the main application of Yacas. This is a small tour of the capabilities Yacas currently offers.
Note that this list of examples is far from complete. Yacas contains a few hundred commands, of which only a few are
shown here.

e Expand ((1+x) ~5); (expand the expression into a polynomial)
e Limit (x,0) Sin(x)/x; (calculate the limit of Sin (x) /x as x approaches zero)

* Newton (Sin(x),x,3,0.0001); (use Newton’s method to find the value of x near 3 where Sin (x)
equals zero numerically and stop if the result is closer than 0. 0001 to the real result)

* DiagonalMatrix ({a,b,c}); (create a matrix with the elements specified in the vector on the diagonal)
* Integrate(x,a,b) xxSin(x); (integrate a function over variable x, from a to b)

e Factor (x"2-1); (factorize a polynomial)

e Apart (1/(x%2-1),x); (create a partial fraction expansion of a polynomial)

e Simplify ((x"~2-1)/(x-1)); (simplification of expressions)

* CanProve((a And b) Or (a And Not b)); (special-purpose simplifier that tries to simplify
boolean expressions as much as possible)

e TrigSimpCombine (Cos (a) *xSin (b)) ; (special-purpose simplifier that tries to transform trigonometric
expressions into a form where there are only additions of trigonometric functions involved and no multiplica-
tions)

2.4 Arbitrary precision numbers

Yacas can deal with arbitrary precision numbers. It can work with large integers, like 20! (The ! means factorial, thus
1x2+3%...%20).

2.4. Arbitrary precision numbers 7

Yacas, Release 1.8.0

As we saw before, rational numbers will stay rational as long as the numerator and denominator are integers, so 55/10
will evaluate to 11 /2. You can override this behavior by using the numerical evaluation function N () . For example,
N (55/10) will evaluate to 5.5 . This behavior holds for most math functions. Yacas will try to maintain an exact
answer (in terms of integers or fractions) instead of using floating point numbers, unless N () is used. Where the value
for the constant pi is needed, use the built-in variable Pi. It will be replaced by the (approximate) numerical value
when N (P1i) is called. Yacas knows some simplification rules using P1i (especially with trigonometric functions).

The function N takes either one or two arguments. It evaluates its first argument and tries to reduce it as much as
possible to a real-valued approximation of the expression. If the second argument is present, it states the number
of digits precision required. Thus N (1/234) returns a number with the current default precision (which starts at
20 digits), but you can request as many digits as you like by passing a second argument, as in N(1/234, 10),
N(1/234, 20),N(1/234, 30), etcetera.

Note that we need to enter N () to force the approximate calculation, otherwise the fraction would have been left
unevaluated.

Revisiting P 1, we can get as many digits of P1 as we like, by providing the precision required as argument to N. So to
get 50 digits precision, we can evaluate N (Pi, 50).

Taking a derivative of a function was amongst the very first of symbolic calculations to be performed by a computer,
as the operation lends itself surprisingly well to being performed automatically. Naturally, it is also implemented in
Yacas, through the function D. D is a bodied function, meaning that its last argument is past the closing brackets.
Where normal functions are called with syntax similar to £ (x, y, z), a bodied function would be called with a syntax
f (x,y) z. Here are two examples of taking a derivative:

* D(x) Sin(x); (taking a derivative)
* D(x) D(x) Sin(x); (taking a derivative twice)

The D () function also accepts an argument specifying how many times the derivative has to be taken. In that case, the
above expressions can also be written as:

* D(x,1) Sin(x); (taking a derivative)

* D(x,2) Sin(x); (taking a derivative twice)

2.5 Analytic functions

Many of the usual analytic functions have been defined in the yacas library. Examples are Exp (1), Sin(2),
ArcSin(1/2), Sqrt (2). These will not evaluate to a numeric result in general, unless the result is an integer,
like Sgrt (4). If asked to reduce the result to a numeric approximation with the function N (), then yacas will do so,
as for example in N (Sqrt (2), 50).

2.6 Variables

Yacas supports variables. You can set the value of a variable with the : = infix operator, as in a:=1;. The variable
can then be used in expressions, and everywhere where it is referred to, it will be replaced by its value.

To clear a variable binding, execute Clear (a) ;. A variable will evaluate to itself after a call to clear it (so after the
call to clear a above, calling a*‘ should now return a). This is one of the properties of
the evaluation scheme of Yacas; when some object can not be evaluated or transformed any further, it is returned as
the final result.

8 Chapter 2. Tutorial

Yacas, Release 1.8.0

2.7 Functions

The := operator can also be used to define simple functions: f (x) :=2+x*x. will define a new function, £, that
accepts one argument and returns twice the square of that argument. This function can now be called, £ (a). You can
change the definition of a function by defining it again.

One and the same function name such as £ may define different functions if they take different numbers of arguments.
One can define a function £ which takes one argument, as for example f (x) :=x"2;, or two arguments, f (x,
y) :=xxy;. If you clicked on both links, both functions should now be defined, and £ (a) calls the one function
whereas f (a, b) calls the other.

Yacas is very flexible when it comes to types of mathematical objects. Functions can in general accept or return any
type of argument.

2.8 Boolean expressions and predicates

Yacas predefines True and False as boolean values. Functions returning boolean values are called predicates.
For example, TsNumber () and IsInteger () are predicates defined in the yacas environment. For example, try
IsNumber (2+x),or IsInteger (15/5).

There are also comparison operators. Typing 2 > 1 would return True. You can also use the infix operators And and
Or, and the prefix operator Not, to make more complex boolean expressions. For example, try True And False,
True Or False, True And Not (False).

2.9 Strings and lists

In addition to numbers and variables, Yacas supports strings and lists. Strings are simply sequences of characters
enclosed by double quotes, for example: "this is a string with \"quotes\" in it".

Lists are ordered groups of items, as usual. Yacas represents lists by putting the objects between braces and separating
them with commas. The list consisting of objects a, b, and c could be entered by typing {a, b, c}. In Yacas, vectors
are represented as lists and matrices as lists of lists.

Items in a list can be accessed through the [] operator. The first element has index one. Examples: when you enter
uu:={a,b,c,d,e, f}; thenuu[2]; evaluates to b, and uu[2 .. 4]; evaluates to {b, c,d}. The “range”
expression 2 .. 4 evaluatesto {2, 3, 4}. Note that spaces around the . . operator are necessary, or else the parser
will not be able to distinguish it from a part of a number.

Lists evaluate their arguments, and return a list with results of evaluating each element. So, typing {1+2, 3}; would
evaluate to {3, 3}.

The idea of using lists to represent expressions dates back to the language LISP developed in the 1970’s. From a small
set of operations on lists, very powerful symbolic manipulation algorithms can be built. Lists can also be used as
function arguments when a variable number of arguments are necessary.

Let’s try some list operations now. First click on m:={a, b, c}; to set up an initial list to work on. Then click on
links below:

* Length (m) (return the length of a list)

e Reverse (m) (return the string reversed)

* Concat (m,m) (concatenate two strings)

* m[1] :=d (setting the first element of the list to a new value, d, as can be verified by evaluating m)

Many more list operations are described in the reference manual.

2.7. Functions 9

https://en.wikipedia.org/wiki/Lisp_(programming_language)

Yacas, Release 1.8.0

2.10 Writing simplification rules

Mathematical calculations require versatile transformations on symbolic quantities. Instead of trying to define all pos-
sible transformations, Yacas provides a simple and easy to use pattern matching scheme for manipulating expressions
according to user-defined rules. Yacas itself is designed as a small core engine executing a large library of rules to
match and replace patterns.

One simple application of pattern-matching rules is to define new functions. (This is actually the only way Yacas
can learn about new functions.) As an example, let’s define a function £ that will evaluate factorials of non-negative
integers. We will define a predicate to check whether our argument is indeed a non-negative integer, and we will use
this predicate and the obvious recursion £ (n) =nxf (n-1) if n>0 and 1 if n=0 to evaluate the factorial.

We start with the simple termination condition, which is that £ (n) should return one if n is zero: 10 # £ (0) <—-
1;. You can verify that this already works for input value zero, with £ (0) .

Now we come to the more complex line 20 # f(n_IsIntegerGreaterThanZero) <-- nxf(n-1);
Now we realize we need a function IsGreaterThanZero(), so we define this function, with
IsIntegerGreaterThanZero (_n) <-- (IsInteger(n) And n > 0); You can verify that it works
by trying £ (5), which should return the same value as 5!.

In the above example we have first defined two simplification rules for a new function f (). Then we
realized that we need to define a predicate IsIntegerGreaterThanZero(). A predicate equivalent
to IsIntegerGreaterThanZero () is actually already defined in the standard library and it’s called
IsPositivelInteger (), so it was not necessary, strictly speaking, to define our own predicate to do the same
thing. We did it here just for illustration purposes.

The first two lines recursively define a factorial function f(n) = n(n—1)... 1. The rules are given precedence values
10 and 20, so the first rule will be applied first. Incidentally, the factorial is also defined in the standard library as a
postfix operator ! and it is bound to an internal routine much faster than the recursion in our example. The example
does show how to create your own routine with a few lines of code. One of the design goals of Yacas was to allow
precisely that, definition of a new function with very little effort.

The operator <—- defines a rule to be applied to a specific function. (The <-- operation cannot be applied to an
atom.) The _n in the rule for IsIntegerGreaterThanZero () specifies that any object which happens to be the
argument of that predicate is matched and assigned to the local variable n. The expression to the right of <—— can use
n (without the underscore) as a variable.

Now we consider the rules for the function £ (). The first rule just specifies that £ (0) should be replaced by 1
in any expression. The second rule is a little more involved. n_IsIntegerGreaterThanZero is a match for
the argument of £, with the proviso that the predicate IsIntegerGreaterThanZero (n) should return True,
otherwise the pattern is not matched. The underscore operator is to be used only on the left hand side of the rule
definition operator <—-.

There is another, slightly longer but equivalent way of writing the second rule: 20 #
f(_n)_(IsIntegerGreaterThanZero(n)) <-- n=*f(n-1); The underscore after the function ob-
ject denotes a postpredicate that should return True or else there is no match. This predicate may be a
complicated expression involving several logical operations, unlike the simple checking of just one predicate in
the n_IsIntegerGreaterThanZero construct. The postpredicate can also use the variable n (without the
underscore).

Precedence values for rules are given by a number followed by the # infix operator (and the transformation rule after
it). This number determines the ordering of precedence for the pattern matching rules, with O the lowest allowed
precedence value, i.e. rules with precedence 0 will be tried first. Multiple rules can have the same number: this
just means that it doesn’t matter what order these patterns are tried in. If no number is supplied, O is assumed. In
our example, the rule £ (0) <-- 1 must be applied earlier than the recursive rule, or else the recursion will never
terminate. But as long as there are no other rules concerning the function £, the assignment of numbers 10 and 20 is
arbitrary, and they could have been 500 and 501 just as well. It is usually a good idea however to keep some space
between these numbers, so you have room to insert new transformation rules later on.

10 Chapter 2. Tutorial

Yacas, Release 1.8.0

Predicates can be combined: for example, IsIntegerGreaterThanZero () could also have been defined as:

10 # IsIntegerGreaterThanZero (n_IsInteger)_ (n>0) <-- True;
20 # IsIntegerGreaterThanZero(_n) <-- False;

The first rule specifies that if n is an integer, and is greater than zero, the result is True, and the second rule states that
otherwise (when the rule with precedence 10 did not apply) the predicate returns False.

In the above example, the expression n > 0 is added after the pattern and allows the pattern to match only if this

predicate return True. This is a useful syntax for defining rules with complicated predicates. There is no difference

between the rules F (n_IsPositiveInteger) <—— ... and F(_n)_(IsPositivelInteger (n)) <--—
. except that the first syntax is a little more concise.

The rule expression has the following form:

[precedence #] pattern [_ postpredicate] <-- replacement;

The optional precedence must be a positive integer.

Some more examples of rules (not made clickable because their equivalents are already in the basic yacas library):

10 # _x + 0 <—— x;

20 # _x - _x <—— 0;

ArcSin(Sin(_x)) <-—— x;

The last rule has no explicit precedence specified in it (the precedence zero will be assigned automatically by the
system).

Yacas will first try to match the pattern as a template. Names preceded or followed by an underscore can match any
one object: a number, a function, a list, etc. Yacas will assign the relevant variables as local variables within the rule,
and try the predicates as stated in the pattern. The post-predicate (defined after the pattern) is tried after all these
matched. As an example, the simplification rule _x - _x <--0 specifies that the two objects at left and at right of
the minus sign should be the same for this transformation rule to apply.

2.11 Local simplification rules

Sometimes you have an expression, and you want to use specific simplification rules on it that should not be universally
applied. This can be done with the / : and the / : : operators. Suppose we have the expression containing things such
as Ln (a*b), and we want to change these into Ln (a) +Ln (b) . The easiest way to do this is using the / : operator
as follows:

* Sin(x) xLn (a*b) (example expression without simplification)

* Sin(x)*Ln(a*b) /: {Ln(_x*_y) <- Ln(x)+Ln(y) } (with instruction to simplify the expres-
sion)
A whole list of simplification rules can be built up in the list, and they will be applied to the expression on the left
hand side of / :.

Note that for these local rules, <- should be used instead of <——. Using latter would result in a global definition of a
new transformation rule on evaluation, which is not the intention.

The / : operator traverses an expression from the top down, trying to apply the rules from the beginning of the list of
rules to the end of the list of rules. If no rules can be applied to the whole expression, it will try the sub-expressions of
the expression being analyzed.

2.11. Local simplification rules 11

Yacas, Release 1.8.0

It might be sometimes necessary to use the /: : operator, which repeatedly applies the /: operator until the result
does not change any more. Caution is required, since rules can contradict each other, and that could result in an infinite
loop. To detect this situation, just use / : repeatedly on the expression. The repetitive nature should become apparent.

2.12 Programming essentials

An important feature of yacas is its programming language which allows you to create your own programs for doing
calculations. This section describes some constructs and functions for control flow.

Looping can be done with the function ForEach (). There are more options, but ForEach () is the simplest to use
for now and will suffice for this turorial. The statement form ForEach (x, list) body executes its body for each
element of the list and assigns the variable x to that element each time. The statement form While (predicate)
body repeats execution of the expression represented by body until evaluation of the expression represented by
predicatereturns False.

This example loops over the integers from one to three, and writes out a line for each, multiplying the integer by 3 and
displaying the result with the function Echo ():

ForEach(x,1 .. 5) Echo(x," times 3 equals ",3%*x);

2.12.1 Compound statements

Multiple statements can be grouped together using the [and] brackets. The compound [a; Echo ("In the
middle"™); 1+2;]; evaluates a, then the Echo () command, and finally evaluates 1+2, and returns the result of
evaluating the last statement 1+2.

A variable can be declared local to a compound statement block by the function Local (varl, var2, ...).For
example, if you execute [Local (v);v:=1+2;v;]; the result will be 3. The program body created a variable
called v, assigned the value of evaluating 1+2 to it, and made sure the contents of the variable v were returned. If you
now evaluate v afterwards you will notice that the variable v is not bound to a value any more. The variable v was
defined locally in the program body between the two square brackets [and] .

Conditional execution is implemented by the

If (predicate, bodyl, body2)

function call. If the expression predicate evaluates to True, the expression represented by body1 is evaluated,
otherwise body?2 is evaluated, and the corresponding value is returned. For example, the absolute value of a number
can be computed with: £ (x) := If(x < 0,-x,x); (note that there already is a standard library function that
calculates the absolute value of a number).

Variables can also be made to be local to a small set of functions, with LocalSymbols (variables) body. For
example, the following code snippet:

LocalSymbols (a,b) [

a:=0;

b:=0;

inc () :=[a:=a+1l;b:=b-1;show();];
show () :=Echo("a = ",a," b = ",b);

17

defines two functions, inc () and show (). Calling inc () repeatedly increments a and decrements b, and calling
show () then shows the result (the function inc () also calls the function show (), but the purpose of this example
is to show how two functions can share the same variable while the outside world cannot get at that variable). The
variables are local to these two functions, as you can see by evaluating a and b outside the scope of these two functions.

12 Chapter 2. Tutorial

Yacas, Release 1.8.0

This feature is very important when writing a larger body of code, where you want to be able to guarantee that there are
no unintended side-effects due to two bits of code defined in different files accidentally using the same global variable.

To illustrate these features, let us create a list of all even integers from 2 to 20 and compute the product of all those
integers except those divisible by 3:

[
Local (L, i, answer) ;
L:={}; 1:=2;
/+*Make a list of all even integers from 2 to 20 x/
While (i <= 20) [L := Append(L, 1i); 1 :=1 + 2; 1;
/+ Now calculate the product of all of these numbers that are not divisible by 3
x/
answer := 1;
ForEach(i,L) If (Mod(i, 3) != 0, answer := answer x 1);
/+ And return the answer =/
answer;

17

(Note that it is not necessarily the most economical way to do it in yacas.)

We used a shorter form of If (predicate, body) with only one body which is executed when the condition
holds. If the condition does not hold, this function call returns False. We also introduced comments, which can be
placed between /» and /. Yacas will ignore anything between those two. When putting a program in a file you can
also use / /. Everything after // up until the end of the line will be a comment. Also shown is the use of the While
function. Its formis While (predicate) body. While the expression represented by predicate evaluates to
True, the expression represented by body will keep on being evaluated.

The above example is not the shortest possible way to write out the algorithm. It is written out in a procedural way,
where the program explains step by step what the computer should do. There is nothing fundamentally wrong with the
approach of writing down a program in a procedural way, but the symbolic nature of Yacas also allows you to write it
in a more concise, elegant, compact way, by combining function calls.

There is nothing wrong with procedural style, but there is amore ‘functional’ approach to the same problem would go
as follows below. The advantage of the functional approach is that it is shorter and more concise (the difference is
cosmetic mostly).

Before we show how to do the same calculation in a functional style, we need to explain what a pure function is,
as you will need it a lot when programming in a functional style. We will jump in with an example that should be
self-explanatory. Consider the expression Lambda ({x, v}, x+y) . This has two arguments, the first listing x and v,
and the second an expression. We can use this construct with the function App1y () as follows:

Apply (Lambda ({x,y},x+y), {2,3})

The result should be 5, the result of adding 2 and 3. The expression starting with Lambda () is essentially a prescrip-
tion for a specific operation, where it is stated that it accepts 2 arguments, and returns the arguments added together.
In this case, since the operation was so simple, we could also have used the name of a function to apply the arguments
to, the addition operator in this case Apply ("+", {2, 3}). When the operations become more complex however,
the Lambda () construct becomes more useful.

Now we are ready to do the same example using a functional approach. First, let us construct a list with all even
numbers from 2 to 20. For this we use the . . operator to set up all numbers from one to ten, and then multiply that
withtwo: 2 « (1 .. 10).

Now we want an expression that returns all the even numbers up to 20 which are not divisible by 3. For this we can
use Select, which takes as first argument a predicate that should return True if the list item is to be accepted, and
False otherwise, and as second argument the list in question:

2.12. Programming essentials 13

Yacas, Release 1.8.0

Select (Lambda ({n},Mod(n,3) !'=0),2+x(1 .. 10))

The numbers 6, 12 and 18 have been correctly filtered out. Here you see one example of a pure function where the
operation is a little bit more complex.

All that remains is to factor the items in this list. For this we can use UnFlatten. Two examples of the use of
UnFlatten are

e UnFlatten({a,b,c},"x",1)
* UnFlatten({a,b,c},"+",0)

The 0 and 1 are a base element to start with when grouping the arguments in to an expression (they should be the
respective identity elements, hence it is zero for addition and 1 for multiplication).

Now we have all the ingredients to finally do the same calculation we did above in a procedural way, but this time we
can do it in a functional style, and thus captured in one concise single line:

’UnFlatten(Select(Lambda({n},Mod(n,3)!:0),2*(1 .. 10)), """, 1)

As was mentioned before, the choice between the two is mostly a matter of style.

2.13 Macros

One of the powerful constructs in yacas is the construct of a macro. In its essence, a macro is a prescription to
create another program before executing the program. An example perhaps explains it best. Evaluate the following
expression

Macro (for, {st,pr,in,bd}) [(@st);While (Qpr) [(@bd); (Rin);1;1;

This expression defines a macro that allows for looping. Yacas has a For () function already, but this is how it could
be defined in one line (In yacas the For () function is bodied, we left that out here for clarity, as the example is about
macros).

To see it work just type for (1:=0,1<3,1i:=1i+1,Echo (i)). You will see the count from one to three.

The construct works as follows; The expression defining the macro sets up a macro named for () with four arguments.
On the right is the body of the macro. This body contains expressions of the form @var. These are replaced by the
values passed in on calling the macro. After all the variables have been replaced, the resulting expression is evaluated.
In effect a new program has been created. Such macro constructs come from LISP, and are famous for allowing you
to almost design your own programming language constructs just for your own problem at hand. When used right,
macros can greatly simplify the task of writing a program.

You can also use the back-quote * to expand a macro in-place. It takes on the form ° (expression), where the
expression can again contain sub-expressions of the form @variable. These instances will be replaced with the
values of these variables.

2.14 The practice of programming in yacas

When you become more proficient in working with yacas you will be doing more and more sophisticated calculations.
For such calculations it is generally necessary to write little programs. In real life you will usually write these programs
in a text editor, and then start yacas, load the text file you just wrote, and try out the calculation. Generally this is an
iterative process, where you go back to the text editor to modify something, and then go back to yacas, type restart
and then reload the file.

14 Chapter 2. Tutorial

http://en.wikipedia.org/wiki/Identity_element

Yacas, Release 1.8.0

On this site you can run yacas in a little window called a yacas calculation center (the same as the one below this
tutorial). On page there is tab that contains a Yacas calculation center. If you click on that tab you will be directed
to a larger calculation center than the one below this tutorial. In this page you can easily switch between doing a
calculation and editing a program to load at startup. We tried to make the experience match the general use of Yacas
on a desktop as much as possible. The Yacas journal (which you see when you go to the Yacas web site) contains
examples of calculations done before by others.

2.15 Defining your own operators

Large part of the yacas system is defined in the scripting language itself. This includes the definitions of the operators
it accepts, and their precedences. This means that you too can define your own operators. This section shows you how
to do that.

Suppose we wanted to define a function F (x, y) =x/y+y/x. We could use the standard syntax F (a,b) := a/b
+ b/a;. F(1,2);. For the purpose of this demonstration, lets assume that we want to define an infix operator xx
for this operation. We can teach yacas about this infix operator with Infix ("xx", OpPrecedence ("/"));
Here we told Yacas that the operator xx is to have the same precedence as the division operator. We can now proceed
to tell Yacas how to evaluate expressions involving the operator xx by defining it as we would with a function, a xx
b := a/b + b/a;.

You can verify for yourself 3 xx 2 + 1; and 1 + 3 xx 2; return the same value, and that they follow the
precedence rules (eg. xx binds stronger than +).

We have chosen the name xx just to show that we don’t need to use the special characters in the infix operator’s name.
However we must define this operator as infix before using it in expressions, otherwise yacas will raise a syntax error.

Finally, we might decide to be completely flexible with this important function and also define it as a mathematical
operator ## . First we define ## as a bodied function and then proceed as before. First we can tell yacas that ## is a
bodied operator with Bodied ("##", OpPrecedence ("/")) ;. Then we define the function itself: ## (a) b
:= a xx b;.Andnow we can use the function, ## (1) 3 + 2;.

We have used the name #4# but we could have used any other name such as xx or F or even _—+Q@+—_. Apart from
possibly confusing yourself, it doesn’t matter what you call the functions you define.

There is currently one limitation in yacas: once a function name is declared as infix (prefix, postfix) or bodied, it will
always be interpreted that way. If we declare a function £ to be bodied, we may later define different functions named
£ with different numbers of arguments, however all of these functions must be bodied.

When you use infix operators and either a prefix of postfix operator next to it you can run in to a situation where yacas
can not quite figure out what you typed. This happens when the operators are right next to each other and all consist
of symbols (and could thus in principle form a single operator). Yacas will raise an error in that case. This can be
avoided by inserting spaces.

2.16 Some assorted programming topics

One use of lists is the associative list, sometimes called a dictionary in other programming languages, which is im-
plemented in Yacas simply as a list of key-value pairs. Keys must be strings and values may be any objects. As-
sociative lists can also work as mini-databases, where a name is associated to an object. As an example, first enter
record:={}; tosetup an empty record. After that, we can fill arbitrary fields in this record:

record["name"]:="Isaia";
record["occupation"] :="prophet";
record["is alive"]:=False;

2.15. Defining your own operators 15

Yacas, Release 1.8.0

Now, evaluating record["name"] should result in the answer "Isaia". The record is now a list that contains
three sublists, as you can see by evaluating record.

Assignment of multiple variables is also possible using lists. For instance, evaluating {x, y}:={2!, 3!} will result
in 2 being assigned to x and 6 to y.

When assigning variables, the right hand side is evaluated before it is assigned. Thus a:=2x2 will set a to 4. This
is however not the case for functions. When entering f (x) : =x+x the right hand side, x+x, is not evaluated before
being assigned. This can be forced by using Eval (). Defining f (x) with £ (x) :=Eval (x+x) will tell the system
to first evaluate x+x (which results in 2 x x) before assigning it to the user function £ () . This specific example is not a
very useful one but it will come in handy when the operation being performed on the right hand side is expensive. For
example, if we evaluate a Taylor series expansion before assigning it to the user-defined function, the engine doesn’t
need to create the Taylor series expansion each time that user-defined function is called.

The imaginary unit ¢ is denoted I and complex numbers can be entered as either expressions involving I, as for
example 1+I+2, or explicitly as Complex (a,b) for a + ¢b. The form Complex (re, im) is the way yacas deals
with complex numbers internally.

2.17 Linear Algebra

Vectors of fixed dimension are represented as lists of their components. The list {1, 2+x, 3xSin (p)} would be
a three-dimensional vector with components 1, 2+x and 3xSin (p) . Matrices are represented as a lists of lists.

Vector components can be assigned values just like list items, since they are in fact list items. If we first set up a
variable called “vector” to contain a three-dimensional vector with the command vector:=ZeroVector (3);
(you can verify that it is indeed a vector with all components set to zero by evaluating vector), you can change
elements of the vector just like you would the elements of a list (seeing as it is represented as a list). For example, to
set the second element to two, just evaluate vector [2] := 2;. This results in a new value for vector.

Yacas can perform multiplication of matrices, vectors and numbers as usual in linear algebra. The standard Yacas
script library also includes taking the determinant and inverse of a matrix, finding eigenvectors and eigenvalues (in
simple cases) and solving linear sets of equations, such as A * x =b where A is a matrix, and x and b are vectors. As a
little example to wetten your appetite, we define a Hilbert matrix: hilbert :=HilbertMatrix (3). We can then
calculate the determinant with Determinant (hilbert), or the inverse with Inverse (hilbert). There are
several more matrix operations supported. See the reference manual for more details.

2.17.1 Threading of functions

Some functions in Yacas can be threaded. This means that calling the function with a list as argument will result
in a list with that function being called on each item in the list. E.g. Sin({a,b,c}); will resultin {Sin(a),
Sin(b), Sin (c) }. This functionality is implemented for most normal analytic functions and arithmetic operators.

2.17.2 Functions as lists

For some work it pays to understand how things work under the hood. Internally, Yacas represents all atomic expres-
sions (numbers and variables) as strings and all compound expressions as lists, like Lisp. Try Ful1lForm (a+bxc) ;
and you will see the text (+ a (* b c)) appear on the screen. This function is occasionally useful, for example
when trying to figure out why a specific transformation rule does not work on a specific expression.

If you try FullForm (1+2) you will see that the result is not quite what we intended. The system first adds up
one and two, and then shows the tree structure of the end result, which is a simple number 3. To stop Yacas from
evaluating something, you can use the function Hold, as FullForm (Hold (1+2)). The function Eval is the
opposite, it instructs Yacas to re-evaluate its argument (effectively evaluating it twice). This undoes the effect of
Hold, as for example Eval (Hold (1+2)).

16 Chapter 2. Tutorial

Yacas, Release 1.8.0

Also, any expression can be converted to a list by the function Listify or back to an expression by the function
UnList:

e Listify (a+b=* (c+d));
e UnList ({Atom ("+"),x,1});

Note that the first element of the list is the name of the function + which is equivalently represented as Atom ("+")
and that the subexpression b (c+d) was not converted to list form. Listify just took the top node of the expression.

2.17. Linear Algebra 17

Yacas, Release 1.8.0

18 Chapter 2. Tutorial

CHAPTER
THREE

REFERENCE MANUAL

Yacas (Yet Another Computer Algebra System) is a small and highly flexible general-purpose computer algebra system
and programming language. The language has a familiar, C-like infix-operator syntax. The distribution contains a
small library of mathematical functions, but its real strength is in the language in which you can easily write your
own symbolic manipulation algorithms. The core engine supports arbitrary precision arithmetic, and is able to execute
symbolic manipulations on various mathematical objects by following user-defined rules.

This document describes the functions that are useful in the context of using yacas as an end user. It is recommended
to first read the online interactive tutorial to get acquainted with the basic language constructs first. This document
expands on the tutorial by explaining the usage of the functions that are useful when doing calculations.

3.1 Arithmetic and other operations on numbers

X+y
addition

Addition can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Hint: Addition is implemented in the standard math library (as opposed to being built-in). This means that it
can be extended by the user.

Example

In> 2+3
out> 5

=X
negation

Negation can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Hint: Negation is implemented in the standard math library (as opposed to being built-in). This means that it
can be extended by the user.

Example
In> - 3
Out> -3

19

Yacas, Release 1.8.0

subtraction

Subtraction can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Hint: Subtraction is implemented in the standard math library (as opposed to being built-in). This means that
it can be extended by the user.

Example

In> 2-3
Out> -1

X*Yy
multiplication

Multiplication can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Note: In the case of matrices, multiplication is defined in terms of standard matrix product.

Hint: Multiplication is implemented in the standard math library (as opposed to being built-in). This means
that it can be extended by the user.

Example

In> 2%3
out> 6

x/y
division

Division can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

Note: For matrices division is element-wise.

Hint: Division is implemented in the standard math library (as opposed to being built-in). This means that it
can be extended by the user.

Example

In> 6/2
Out> 3

Xy
exponentiation

Exponentiation can work on integers, rational numbers, complex numbers, vectors, matrices and lists.

20 Chapter 3. Reference Manual

Yacas, Release 1.8.0

Note: In the case of matrices, exponenti